
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ysre20

Survey Review

ISSN: 0039-6265 (Print) 1752-2706 (Online) Journal homepage: https://www.tandfonline.com/loi/ysre20

An investigation of different Wi-Fi signal
behaviours and their effects on indoor positioning
accuracy

V. İlçi, E. Gülal & R. M. Alkan

To cite this article: V. İlçi, E. Gülal & R. M. Alkan (2018) An investigation of different Wi-Fi signal
behaviours and their effects on indoor positioning accuracy, Survey Review, 50:362, 404-411, DOI:
10.1080/00396265.2017.1292672

To link to this article:  https://doi.org/10.1080/00396265.2017.1292672

Published online: 22 Feb 2017.

Submit your article to this journal 

Article views: 300

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=ysre20
https://www.tandfonline.com/loi/ysre20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00396265.2017.1292672
https://doi.org/10.1080/00396265.2017.1292672
https://www.tandfonline.com/action/authorSubmission?journalCode=ysre20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ysre20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/00396265.2017.1292672&domain=pdf&date_stamp=2017-02-22
http://crossmark.crossref.org/dialog/?doi=10.1080/00396265.2017.1292672&domain=pdf&date_stamp=2017-02-22


An investigation of different Wi-Fi signal
behaviours and their effects on indoor
positioning accuracy
V. Il̇çi∗1, E. Gülal2 and R. M. Alkan1,3

In recent years, in addition to 2.4 GHz Wi-Fi signals, 5 GHz signals have been introduced making it
possible to transmit data at both IEEE 802.11n and 802.11ac standards. Therefore, researchers
have increasingly focused on developing indoor positioning applications based on Wi-Fi dual
band. This study was conducted in two stages. In the first stage, we investigated the behaviours
of 2.4 and 5 GHz Wi-Fi signals by collecting received signal strength (RSS) values from access
points and determined the relationship between RSS and distance for each signal frequency
using a curve fitting technique. Furthermore, we comparatively analysed signal fluctuations and
their effects on positioning accuracy. In the second part of the study, we compared the
positioning accuracy of four algorithms; namely, bilateration, trilateration, weighted iterative non-
linear least square and extended Kalman filter using 2.4 and 5 GHz Wi-Fi signals. The
experimental results revealed that the 5 GHz signals were more stable and had better
positioning accuracy than the 2.4 GHz signals. Concerning the positioning algorithms,
bilateration had the best positioning accuracy at both frequencies.
Keywords: Wi-Fi, 2.4 GHz, 5 GHz, Bilateration, Trilateration, Weighted iterative nonlinear least square, Extended Kalman filter, Indoor positioning

Introduction
In recent years, indoor positioning has been intensively
researched by academic and commercial communities
due to the wide demand for it (Subbu et al. 2014).
Although the main purpose of such research was to pro-
vide an effective positioning solution for indoor position-
ing, there is still no solution that has been agreed on by the
community (Caceres et al. 2009). In outdoor environ-
ments, Global Navigation Satellite Systems (GNSS) pro-
vides positioning accuracy at meter-to-millimeter level
using several different measurement techniques (Alkan
et al. 2015). However, this accuracy may be reduced due
to several obstructions that prevent the direct line-of-
sight between satellites and receivers such as heavy tree
cover, ravines and urban canyons (Alkan et al. 2015). In
addition, other conditions including poor satellite geome-
try and inadequate number of visible satellites may nega-
tively affect the positioning accuracy of GNSS systems
(Alcay and Yigit 2016). Similarly, in indoor areas, several
factors; e.g., reflection, scattering, multipath and
obstacles (Al-Ammar et al. 2014) result in loss of GNSS
signals and prevent the achievement of the desired

positioning accuracy (Wang et al. 2012). In the last dec-
ade, a considerable amount of work has been carried
out using technologies such as radio frequency identifi-
cation, Bluetooth, wireless local area network (WLAN),
ZigBee and global positioning system (GPS) to eliminate
these deficiencies and introduce an accurate indoor posi-
tioning solution (Li 2014). Among these, WLAN stands
out with its characteristics of not requiring any additional
equipment and being cost-effective, which make it easily
accessible almost everywhere including hospitals, shop-
ping malls, airports and campuses (Yim et al. 2010).
Moreover, most mobile devices; e.g., mobile phones,
tablets and laptops are equipped with WLAN and there-
fore they can transmit and receive Wi-Fi signals (Talvitie
et al. 2015b).
In indoor positioning systems, range-based methods

that rely on the determination of the distance between
the transmitter and receiver are commonly used. These
distances can be obtained using different techniques
such as time of arrival, time difference of arrival
(Li et al. 2011), angle of arrival and RSS. Although the
former three methods require specialised equipment to
obtain distances, RSS does not have such a requirement
and thus is widely preferred for indoor positioning appli-
cations (Tarrio et al. 2011, Wang et al. 2012, Talvitie et al.
2015a). However, RSS is affected by certain indoor
environmental parameters including obstruction, multi-
path, shadowing, fading, diffraction and scattering,
which reduce the accuracy performance regarding the
measurement of distances and positioning (Yim et al.
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2010, Wang et al. 2012). Typically, two approaches are
used in RSS-based positioning systems; fingerprinting
and channel model-based. In fingerprinting, first RSS
values are collected from all APs to generate a radio
map related to the workspace. Then, the position of the
receiver can be determined by matching the observed
RSS values with the closest RSS values in the radio
map (Tarrio et al. 2008). The two main disadvantages
of this approach are the requirement of an excessive
pre-survey to create a radio map and environmental
effects on RSS values (Yu et al. 2014). Moreover, changes
in the working area adversely affect the positioning accu-
racy of the system and require the repetition of both the
labour intensive and time consuming pre-survey and the
experimental radio mapping process. In the channel
model-based approach, distances between transmitters
and the receiver are established using a signal propagation
model that reveals the relationship between RSS and dis-
tance, and the position of the receiver can be determined
using these distances. However, this approach also has
two main limitations. First, determination of ranges is
more difficult as the distance between the receiver and
transmitters increases due to the logarithmic relationship.
Second, the position of the transmitters should be known
in order to determine the distances between the receiver
and transmitters (Mautz 2012).
Until the last few years, WLAN systems mostly pro-

vided services in the 2.4 GHz frequency band; thus, this
band is commonly used in mobile devices, and WLAN-
based indoor positioning research has mostly focused on
the investigation of this frequency. However, due to the
common use of the 2.4 GHz signals, they are subject to
strong interference from other devices such as Bluetooth
and microwaves (Li et al. 2005b). With the release of
new standards in the WLAN technology namely IEEE
802.11n and 802.11ac, in addition to 2.4, 5 GHz fre-
quency band has also been utilised in new generation
APs. This has prompted some researchers to explore the
use of 5 GHz bands in indoor positioning. Today, a navi-
gation and positioning solution can be offered by the use
of smartphones due to their improved microprocessors,
operating systems, multi-sensors and radio transceivers
such as Wi-Fi (Zhuang et al. 2015). Lohan et al. (2015)
investigated the RSS fluctuations and positioning accu-
racy of 2.4, 5 GHz Wi-Fi signals and Bluetooth low
energy(BLE) for indoor positioning applications. For
the comparison of the positioning accuracy of these sig-
nals, they used fingerprinting, weighted centroid and
path-loss-based algorithms with and without floor loss.
The authors reported that the positioning accuracy of
5 GHz frequency bands was slightly lower than that of
2.4 GHz and BLE due to the lower signal in the 5 GHz
band. In another study, the 2.4 and 5 GHz Wi-Fi signals
were comparatively analysed by means of interpolation
and extrapolation using the fingerprinting method (Talvi-
tie et al. 2015a). Similarly, the results of that study
revealed that the positioning accuracy of the 2.4 GHz sig-
nals were much better than that of the 5 GHz signals due
to the lower number of 5 GHz fingerprints compared to
2.4 GHz. The authors suggested that the positioning
accuracy of the two bands would have been at the same
level if they had an equal number of fingerprints. Similar
results were obtained by Talvitie et al. (2015b), who used
the Bayesian fingerprinting method. In addition, Karls-
son et al. (2015) compared the positioning accuracy of

the 2.4 and 5 Wi-Fi signals in an indoor environment
using a particle filter. They found that the 2.4 GHz signals
provided better results than 5 GHz. Yu et al. (2014)
implemented an indoor positioning system to analyse
and compare the fluctuations and positioning accuracies
of 2.4 and 5 GHz signals. They compared the perform-
ance of fingerprinting-based methods namely k-nearest
neighbour (KNN), weighted KNN, fuzzy logic and histo-
gram algorithms in accurate positioning. They reported
that the 5 GHz signals had lower variances and were
more stable, and therefore, their positioning accuracy
was better than that of the 2.4 GHz signals for all posi-
tioning algorithms. A detailed analysis of 2.4 and
5 GHz signal behaviours was performed using a finger-
printing system in an indoor environment (Lui et al.
2011). It was concluded that the accuracy of fingerprint-
ing could be improved using 5 GHz signals. Although
all these studies analysed the signal behaviours of 2.4
and 5 GHz frequency bands and compared their position-
ing accuracies using Wi-Fi based fingerprinting algor-
ithms, in this study, we used four channel model-based
algorithms in an indoor environment to investigate the
two signal behaviours comparatively and determine the
location of a mobile device.
In this study, we compared the positioning accuracy of

2.4 and 5 GHz frequency bands for RSS-based indoor
localisation. This experiment was conducted in signal
propagation and positioning phases. In the signal propa-
gation phase, to investigate and comparatively analyse
the behaviours of the Wi-Fi bands, RSS data in the 2.4
and 5 GHz bands were collected using a smart phone at
different ranges, and the relationship between the RSS
and distance was determined using a CF technique. In
the positioning phase, the distances between the smart
phone and APs were determined using equations that
had been derived from CF for each band. Using these dis-
tances, position information was predicted by different
localisation algorithms; bilateration, trilateration,
WINLSQ and EKF. In brief, the two main contributions
of this study were the detailed analysis of 2.4 GHz and
5 GHz Wi-Fi band behaviours and the comparison of
the accuracy of two frequency bands in an indoor
environment using four positioning algorithms.

Propagation loss model
In channel model-based indoor positioning, the location
of a mobile device is determined using the estimated dis-
tances from APs; therefore, distance estimation is a cru-
cial step in localisation applications (Wang et al. 2015).
However, RSS values are very sensitive to the effects of
the indoor environment, such as reflection, diffraction,
penetration, scattering and fading (Seybold 2005), com-
plicating the distance estimation process (İlçi et al.
2015). The relationship between the distance and RSS
can be determined using site-general modes such as the
log-distance path loss model (Rappaport 1996) or the
path loss model developed by the International Telecom-
munication Union (ITU-R 2015). These models present a
simplified solution to determine signal behaviours with
only few measurements in the deployment area (Naik
and Bapat 2014). However, due to the environmental
effects on the signals, these models cannot provide a simi-
lar distance estimation solution for the whole area (Li
et al. 2005a, Wang et al. 2015). RSS values depend
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logarithmically on distance (Rappaport 1996) therefore,
in this study, we adopted a logarithmic-based CF
approach to estimate the distances. This approach can
be formulated as follows:

RSS = −a− ln(d)b (1)

where a and b are the constant values that were obtained
from the experimental studies on the application area,
and d is the distance between the transmitter and the
receiver.

Positioning algorithms
Bilateration
The bilateration algorithm consists of a series of non-
iterative geometric formulations that provide high posi-
tioning accuracy and low computational complexity (Li
et al. 2007, 2008); thus, this algorithm is appropriate for
constrained devices such as smartphones (Cota-Ruiz
et al. 2012). The bilateration algorithm is based on the
calculation of two circle intersections for every two neigh-
bour APs called candidate points. To determine the
appropriate candidate point for both candidate points,
the proximity to the other paired candidates is tested
using both of these points. After finding all the reasonable
candidate points clustered in an area, the final position is
determined by calculating the average.
Owing to the inaccurate estimation of distance in

indoor environments, three scenarios may arise:
(i) Two intersections may occur at two different points.
(ii) There may not be any intersection due to the circles
being away from each other.
(iii) There may not be any intersection due to one of the
circles containing the other.
The positions of the APs are indicated as

APN = [XAPN YAPN ]T and the position of the mobile
device is U = [XU YU ]T. Candidate points that are
the reflection of each other with respect to the imaginary
line between the position of two APs are symbolised as J

′
12

and J
′ ′
12.

The minimum Euclidean sum from one of the two can-
didate points to all of the other candidate points is calcu-
lated to determine the logical candidate positions between

the two candidate pairs (J ′
12 or J ′′

12; J
′
13 or J

′′
13; J

′
23 or J

′′
23.

a = min(J ′
12 − J ′2

13, J
′
12 − J ′′2

13 )

+min(J ′
12 − J ′2

23, J
′
12 − J ′′2

23 )
(2)

b = min(J ′′
12 − J ′2

13, J
′′
12 − J ′′2

13 )

+min(J ′′
12 − J ′2

23, J
′′
12 − J ′′2

23 )
(3)

In Fig. 1, the minimum value between a and b indicate
the logical candidate points J ′

12 or J ′′
12. After all the oper-

ations are repeated for all the neighbouring AP pairs, the
real position of the target is calculated based on the aver-
age of all logical candidate points. Detailed information
about the bilateration algorithm can be obtained from
Li et al. (2007) and Cota-Ruiz et al. (2012).

Trilateration
Trilateration is one of the simplest and most widely used
algorithms in the literature (Khan et al. 2014). In this
algorithm, the location of a mobile device can be deter-
mined using three or more simultaneous range measure-
ments from APs (Koo and Cha 2011, İlçi et al. 2015).
For the development of 2-D and 3-D solutions, trilatera-
tion requires at least 3 and 4 non-coplanar ranges, respect-
ively (Al-Ammar et al. 2014). This algorithm can be
defined by the following expressions:

A�x = �b (4)

A = 2

(XAP2 − XAP1 ) (YAP2 − YAP1 )
(XAP3 − XAP1 ) (YAP3 − YAP1 )

..

. ..
.

(XAPM − XAP1 ) (YAPM − YAP1)

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (5)

�b =

(X 2
AP2

− X 2
AP1

)+ (Y 2
AP2

− Y 2
AP1

)− (R2
2 − R2

1)

(X 2
AP3

− X 2
AP1

)+ (Y 2
AP3

− Y 2
AP1

)− (R2
3 − R2

1)

..

.

(X 2
APM

− X 2
AP1

)+ (Y 2
APM

− Y 2
AP1

)− (R2
M − R2

1)

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

(6)

�x = (ATA)−1AT�b (7)

where AP1, AP2, AP3, and AP4 are the positions of the
reference points, andR1,R2,R3, andR4 represent the esti-
mated ranges between mobile devices and reference
points obtained using RSS values. The known coordinates
of APs are represented as APi = [XAPi YAPi ]

T, and x is
the coordinate of the mobile phone that can be estimated
by applying minimum mean square error.

Weighted iterative nonlinear least squares
Least square algorithms minimise square errors to esti-
mate optimal linear and nonlinear parameters (Li
2014). As known, RSS decreases logarithmically with dis-
tance (Rappaport 1996); therefore, high-range esti-
mations could be more affected by RSS-based errors
than short ranges (Tarrio et al. 2011). Therefore, the
weighted form of the least square algorithm can improve
positioning accuracy (Wang 2015). In this study, we used
theWINLSQ algorithm described by Zhuang et al. (2015)
to achieve highly accurate positioning. This algorithm
requires an initial coordinate to run equations. We also1 Bilateration algorithm
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utilised the Taylor equation to minimise computational
complexity (Xiao et al. 2012). The measurement misclo-
sure vector dz is presented as:

dz = Hdx+ v (8)

Equations (9)–(11) present the solution dx, covariance
matrix of the solution Cdx̂, and the new state vector
x̂updated, respectively:

dx̂ = (HTR−1H)−1HTR−1dz (9)

Cdx̂ = (HTR−1H)−1 (10)

x̂updated = x̂+ dx̂ (11)

The observation covariance matrix R is expressed as
follows:

R
RSS,k=diag(s2

dAP1,k
. . . s2

dAPn,k
)

(12)

The design matrix H can be arranged as a Jacobian
matrix for the static target as:

Hdist,k =

(XM − XAP1)
d1

(YM − YAP1)
d1

(XM − XAP2)
d2

(YM − YAP2)
d2

..

. ..
.

(XM − XAPn )
dn

(XM − XAPn )
dn

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

The iteration of this process continues until
|dx̂| , threshold. Detailed information about the
WINLSQ algorithm can be obtained from Zhuang
et al. (2015).

Extended Kalman Filter
The Kalman Filter (KF) algorithm minimises variance
estimation errors by determining the status of the process
with a series of repetitive mathematical calculations
(Welch and Bishop 2006). Although this algorithm pro-
vides an efficient solution for linear systems, in which
measurements errors have a Gaussian distribution, it

does not offer an equally optimal solution for non-linear
systems (Khan et al. 2013). Therefore, EKF has been pro-
posed to overcome the limitations of KF through the lin-
earisation of non-linear systems. The success of this
algorithm depends on the well modelling of system
dynamics and measurements (Caceres et al. 2009). In
this algorithm, current state estimation is predicted
based on previous state estimation. EKF is composed of
two recursive phases; ‘State Predict’ and ‘State Update’
(Fig. 2).
In the state prediction phase, a priori state vector x̂−k at

time k is predicted using a posteriori state vector x̂+k−1 at
time k − 1. fk−1, Bk and uk−1 represent the linearised
state transition matrix, input matrix and system input,
respectively. P−

k , P
+
k−1, and Qk−1 refer to the estimated

covariance matrix associated with the a priori state vector
x̂−k , the previous a posteriori covariance matrix and the
covariance matrix of the process noise, respectively. In
the state update phase, Kk is the Kalman gain computed
using the Jacobian matrix of the expected measurements
Hk and the covariance matrix of the observation vector
Rk. zk is the measurement vector at time k and I rep-
resents the identity matrix. Detailed information about
the EKF algorithm can be obtained from Welch and
Bishop (2006), Yim et al. (2010), (Khan et al. 2013) and
Khan et al. (2014).

Analysis of 2.4 GHz and 5 GHz Wi-Fi
frequency bands
This application was conducted in a line-of-sight indoor
environment to comparatively analyse the behaviours of
2.4 and 5 GHz Wi-Fi signals. These signals were trans-
mitted by 10 APs of the same brand (ASUS
DSL-AC68U). The signals were collected using an
Android-based smartphone with the capability to receive
Wi-Fi signals at both frequencies. Approximately 150
samples were collected from 10 APs at 0.6 m intervals
from 0.6 to 27.8 m in Corridor 3 (Fig. 5). We developed
software using the JAVAprogramming language to collect
Wi-Fi signals and estimate distances via a propagation
loss model. Figure 3 presents the average values of the

2 EKF algorithm
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RSS samples obtained from different distances by 10 APs,
the mean values of these 10 lines and the logarithmic CF
obtained using the MATLAB Curve Fitting Toolbox.
The 2.4 and 5 GHz signals logarithmically lost their

effectiveness with the increasing distance, but the signal

fluctuations of the 2.4 GHz signals were considerably
higher than those of the 5 GHz signals. This is because
2.4 GHz is an unlicensed spectrum that is mostly used
by other devices such as microwaves ovens, Bluetooth
devices and wireless video devices. This usage causes
noise and interference on the 2.4 GHz signals (Yu et al.
2014). In the fitting statistics for the 2.4 and 5 GHz sig-
nals, the root mean square error (RMSE) value being clo-
ser to 0 indicates that the model is useful for prediction
and the R-square value being closer to 1 show that the
model accounts for a greater proportion of variance.
Table 1 shows that the fitted curve of the 5 GHz signals

3 The relationship between the RSS and distance a 2.4 GHz, and b 5 GHz

Table 1 Statistical values of CF

2.4 GHz 5 GHz

RMSE 2.577 1.685
R-square 0.8238 0.9351

4 Standard deviations of the a 2.4 GHz and b 5 GHz signals by distance
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are more representative than the 2.4 GHz signals. This
means that there will be fewer distance estimation errors
with the 5 GHz signals compared to the 2.4 GHz signals.
Furthermore, the mean standard deviations of the RSS
values (Fig. 4) were found to be 1.2 and 0.6 dBm for the
2.4 and 5 GHz signals, respectively.
The tests showed that the 5 GHz signals were more

appropriate for modelling and more stable with less signal
fluctuations and lower standard deviations compared to
the 2.4 GHz signals. Therefore, it can be expected that
the 5 GHz Wi-Fi signals provide better distance esti-
mation and higher positioning accuracy.

Analysis of positioning algorithms
This study had two main objectives; investigating the
effects of signal behaviours on the positioning accuracy
of 2.4 and 5 GHz frequency bands, and comparing the
positioning accuracy of four algorithms. To this end,
first a static test was carried out in a line-of-sight indoor
environment of 10 m × 9.6 m size in the main building
of the Vocational School of Technical Sciences of Hitit
University (Fig. 5). Four ASUS DSL-AC68U APs with
the capability to transmit 2.4 and 5 GHz Wi-Fi signals
at 802.11ac IEEE standards were located in the corner
of the atrium (red dots in Fig. 5). Using an Android-

5 Application area

6 Positioning errors of four positioning algorithms using 2.4 GHz signals
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based smartphone, the RSS values transmitted from the
APs were collected 150 times at 27 observed points
(green dots in Fig. 5). In order to perform distance and
positioning calculations on the smartphone, the Java pro-
gramming language including Jama basic linear algebra
package was used. The 2-D reference coordinates of 4
APs and 27 observed points were obtained using tra-
ditional geodetic methods. The coordinate values
obtained from four positioning algorithms were com-
pared with reference coordinates. Figures 6 and 7 present
the positioning error values of the 2.4 and 5 GHz signals,
respectively. Moreover, the statistical values of the pos-
ition errors of the 27 observed points are given in Table 2.
We first compared the results according to the signal

frequencies. Although, the minimum positioning errors
were very similar in both the 2.4 and 5 GHz signals, the
maximum positioning error of the 5 GHz signals were
substantially better than those of 2.4 GHz (Table 2).
Although the RMSE and mean values obtained from
the bilateration, WINLSQ and trilateration algorithms
showed that the 5 GHz Wi-Fi signals were better than
the 2.4 GHz signals, the results of the EKF algorithm
suggested that the 2.4 GHz signals were slightly better
than those of 5 GHz. Based on these results, particularly
concerning maximum positioning errors, we consider that
5 GHz Wi-Fi signals are more feasible for indoor

positioning applications than 2.4 GHz signals. Noise
and interference effects were found to cause more fluctu-
ations in the 2.4 GHz signals reducing the positioning
accuracy of these signals. .
In the second stage of the study, we compared two non-

iterative positioning algorithms (bilateration and trila-
teration) and two iterative algorithms that require initiali-
sation values (WINLSQ and EKF) in terms of their
positioning accuracy. Table 2 clearly indicates that the
bilateration algorithm achieved the best positioning accu-
racy while trilateration provided the worst results. In
addition, according to the results of two iterative position-
ing algorithms, the WINLSQ algorithm produced slightly
better results than the EKF algorithm. The main disad-
vantage of the trilateration algorithm was that weights
were not used although the RSS values logarithmically
decreased with the increasing distance. This caused
greater signal fluctuations and higher number of distance
errors as the distance increased, thus resulting in more
positioning errors. On the other hand, bilateration pro-
vided the best positioning accuracy since this algorithm
disposes of incompatible candidate points using a cluster-
ing test, and finds the optimal solution for the candidate
points. Moreover, the bilateration algorithm presents
low computational complexity, which is very important
for constrained devices such as mobile phones.

7 Positioning errors of four positioning algorithms using 5 GHz signals

Table 2 Statistical values by positioning algorithm and signal type

2.4 GHz 5 GHz

Bilater. (m) WINLSQ (m) EKF (m) Trilater. (m) Bilater. (m) WINLSQ (m) EKF (m) Trilater. (m)

min 0.71 0.85 0.93 0.88 0.71 0.88 1.32 2.07
max 5.97 11.95 13.75 26.92 4.79 6.65 10.50 12.91
mean 2.94 3.41 4.09 7.79 2.46 3.32 4.12 4.51
RMSE 3.27 4.00 4.89 10.28 2.75 3.61 4.57 5.29
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Conclusions
In this study, we first focused on the comparison of the
behaviours of twoWi-Fi signals and their effect on indoor
positioning accuracy. In recent years, the availability of
dual band Wi-Fi devices has dramatically increased lead-
ing us to investigate the similarities and differences
between 2.4 and 5 GHz Wi-Fi signals in terms of their
efficiency in indoor positioning applications. Today, the
2.4 GHz band is still used by most wireless devices, and
the signals from these devices cause interference and fluc-
tuation effects on this band. Since there are no interfer-
ence effects on the 5 GHz signals, these signals have
lower signal fluctuations; thus, they provide better dis-
tance estimation and higher positioning accuracies than
the 2.4 GHz signals.
Second, the positioning accuracy of four RSS-based

algorithms namely bilateration, trilateration, WINLSQ
and EKF was compared. Providing highly accurate posi-
tioning results and having low computational complexity,
bilateration was found to be a superior positioning algor-
ithm for static indoor applications in both 2.4 and 5 GHz
frequency bands. Moreover, using bilateration as an
initial value for certain positioning algorithms such as
WINLSQ and EKF seems to be more suitable than
using the trilateration algorithm. This study also demon-
strated that theWINLSQ algorithm provide slightly more
accurate positioning accuracies than EKF algorithm in a
static application. The results of the study reveal that
approximately 2.46 m positioning accuracy can be
obtained using the bilateration algorithm with the
5 GHz Wi-Fi signals in line-of-sight indoor localisation
applications.
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