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In this paper, a three-dimensional chaotic system with a line equilibrium is studied, in which a single nonbifurcation parameter is
used to control the amplitude and frequency. A variety of chaotic signals can be modified using the amplitude-frequency control
switch. (e realization of circuit simulation based on multisim further verifies the theoretical analysis. Finally, the method for
encrypting color images is tested, and the process performance is valued. It shows that the novel chaotic oscillation has a
promising application prospect in image encryption.

1. Introduction

Since chaos was first modeled by Edward Norton Lorenz in
1963 [1], great attention has been attracted for the reason
that in such deterministic systems, chaos refers to the
presence of seemingly random irregular motion [2]. In fact,
chaos is a universal phenomenon in nonlinear systems and
an inherent property of nonlinear dynamic systems. Chaos
is a fundamental concept in nonlinear systems, and it is
frequently used to characterize phenomena including bi-
furcation and periodic motion [3, 4]. It is found that a
chaotic system will display bifurcation under specific pa-
rameters and that periodic and aperiodic motion can be-
come entangled. Many famous 3-D chaotic systems have
been proposed, including Arneodo systems, Sprott systems,
Chen systems, Lv-Chen systems, Cai systems, and T sys-
tems [5–8]. A chaotic circuit is a significant research topic
and an important representation of chaos. Chua proposed
the first chaotic circuit in 1984 [9–12], trying to bridge the
gap between chaos theory and chaotic circuits. People have
performed significant research on chaos theory and pro-
duced numerous novel breakthroughs in recent years as a
result of the wide application of chaos [13–17]. For

information encryption, chaotic sequence signals have a
significant application value. Chaos has been extensively
applied for many aspects due to the intricate relationship
between chaos and cryptography, and significant ad-
vancement has been performed in this area. Because of the
irregularities and unpredictability of chaotic signals, chaos
and corresponding fundamental systems have received a lot
of attention [18–24]. A high-dimensional system’s chaotic
dynamics seem to be more complex, and sometimes, they
show hyperchaos for more than two positive Lyapunov
exponents [25, 26]. (erefore, it has been proven that
chaotic signals can contribute to enhancing the security of
chaos-based communication as well as digital encryption.
Furthermore, a hidden chaotic attractor is an important
phenomenon found ten years ago. (e hidden oscillation
has received a lot of attention because of its potential threat
and possible applications. Finding hidden chaotic attrac-
tors in nonlinear dynamical systems has become a major
issue in nonlinear dynamical system research [27–29].
Many hidden attractors have been found in memristive
systems [30] and hyperchaotic systems [31]. However,
there is not much attention on hidden attractors with
amplitude-frequency control. Recently, Wang et al. [32]
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studied the amplitude control and encryption application
of chaotic signal, and they found that modular circuit cells
with systematically configured parameters are useful for
implementing multipiecewise Chua’s diode. Wang et al.
[33, 34] also studied the hidden oscillations in Chua’s
circuit and modified Sprott-A systems, where all the basins
of attraction are not intersected with any equilibrium point
indicating hidden attractor.

In this paper, a chaotic system with a line of equilibrium
points is focused on, where the attractor stands in the region
with negative y, and thus, the basin of attraction does not
intersect with all equilibrium points indicating hidden
attractor. Furthermore, the amplitude and frequency of
hidden oscillation can be controlled by a single knob. Circuit
implementation shows the convenience of amplitude-fre-
quency control of the chaotic signal. Image encryption
proves the merits of this system.(e remaining of this paper
is organized as follows. In Section 2, the system model is
elaborated. In Section 3, the dynamics of the system are
analyzed. In Section 4, the system is implemented in a
simulated circuit. Finally, a chaotic system is applied to
image encryption. (e conclusions are presented in the last
section.

2. A Novel Hidden Attractor

In reference [35], the 3-dimensional chaotic system is ar-
ticulated as

_x � cy + y
2

− ayz,

_y � −z
2

+ byz,

_z � xy.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

(e system state variables are x, y, and z, while the
constants a, b, and c are the real coefficients, with dots

representing a derivative of time t. When a� 0.9, b� 1, c� 1,
and IC� (2, −2, 2), the system (1) exhibits chaos in the region
with negative y, as shown in Figure 1. (ere are six terms in
this new system, with two nonlinear items. (e Lyapunov
exponents are L1 � 0.1314, L2 � 0, and L3 � −0.8453.

3. Dynamical Analysis

3.1. Equilibrium Points. Let _x � _y � _z � 0. (e equilibrium
points of the system can be calculated as

cy + y
2

− ayz � 0,

−z
2

+ byz � 0,

xy � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

EO � x, 0, 0,

E1 � 0, −c, 0,

E2 � 0,
c

ab − 1
,

bc

ab − 1
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

where a� 0.9, b� 1, and c� 1. Solving this equation, the
dynamical system (1) has three nontrivial equilibrium points
in (2) which is independent of the value of the parameters a,
b, and c.

J �

0 c + 2y − az −ay

0 bz by − 2z

y x 0





. (4)

As |J − λI| � 0, the characteristic equation is

det(J − λI) � −aλy
2

+ 2ayz
2

+ bcy
2

+ bλ2z + bλxy + 2by
3

− 2cyz − λ3 − 2λxz − 4y
2
z � 0. (5)

In the Jacobian matrix of system (1), the equilibrium
point E is defined as

J EO(  � J E1(  � J E2(  �

0 c + 2y − az −ay

0 bz by − 2z

y x 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (6)

(e eigenvalues of the matrix at the equilibrium point
can be determined as follows:

EO: λ1 � 0; λ2 � 0; λ3 � 0,

E1: λ1 � −0.7113; λ2 � 0.3556 + 1.1311i; λ3 � 0.3556 − 1.1311i,

E2: λ1 � 0.9911; λ2 � −5.4956 + 8.4079i, λ3 � −5.4956 − 8.4079i.

⎧⎪⎪⎨

⎪⎪⎩
(7)

(e eigenvalues of the system are obtained while a� 0.9,
b� 1, and c� 1. (e obtained all eigenvalues are given in
Equation (7). (e equilibrium E1(0, −c, 0) is a saddle-focus

point of index-2; therefore, this equilibrium point E1 is
unstable, and we can see in E2 that λ1 is a positive real
number, and λ2 and λ3 are a pair of complex conjugate
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eigenvalues with a negative real number. (e equilibrium
E2(0, c/ab − 1, bc/ab − 1) is a saddle-focus point of index-1;
therefore, this equilibrium point E2 is also unstable.

3.2. Dissipativity Analysis. Inference µ is a region in the
horizontal surface A3, and V(t) is set to be the volume of
µ(t).

Here, we obtain

_V(t) � 
∞

μ(t)
(∇ × F)dxdydz. (8)

(erefore, the dissipativity of the proposed chaotic
system is

∇ × F �
z _x

x
+

z _y

y
+

z _z

z
,

�
z cy + y

2
− ayz 

x
+

z −z
2

+ byz 

y
+

z(xy)

z

� 0 + bz + 0 � z � c,

(9)

where F is the 3-dimensional chaotic system, and b and z are
the real parameters. (e above equation is rewritten as

_V(t) � 
∞

μ(t)
cdxdydz � cV(t). (10)

(erefore, we can obtain V(t) � ecV(0); if ∇ × F< 0,
then system (1) is dissipative and the state of the system is
bounded by the state of the system (when a� 0.9, b� 1, and
c� 1).

3.3. Amplitude and Frequent Control. In system (1), pa-
rameter c is a single knob for amplitude and frequency
control. Let x⟶ mx, y⟶ my, z⟶ mz, t⟶ t/m
(m> 0); then, system (1) turns to be

_x �
c

m
y + y

2
− ayz,

_y � −z
2

+ byz,

_z � xy,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

indicating that the parameter c can control the amplitude
and frequency of all variables x, y, and z, as shown in
Figure 2. In Figure 3(a), when the linear coefficient c is
increased, system (1) keeps the chaotic state of all the time
and the chaotic area continue to increase. (e rescaled
amplitude and frequency can also be proved by Lyapunov
exponents, as shown in Figure 3(b).

4. Circuit Implementation

Circuit verification is also an essential step in the imple-
mentation of the proposed chaotic system to ensure its

-1

-1

-2

-3

-4

-5
0 1 2

X
3

Y

(a)

-1 0 1 2
X

3

0

-2

-4

Z

(b)

-5

0

-2

-4

-4 -3 -2
Y

Z

-1

(c)

Y
X

0

-2

-4

0
-2

-4 0
2

-2

Z

(d)

Figure 1: Chaotic attractor of system (1) with a� 0.9, b� 1, and c� 1 under initial condition IC� (2, − 2, 2): (a) (x)-(y), (b) (x)-(z), (c) (y)-(z),
and (d) (x)-(y)-(z).
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correctness. Meanwhile, the key issue in the circuit is how to
implement a circuit expression for a 3D chaotic system by
converting and transforming it into a realistic circuit using
electronic devices such as capacitors and resistors. To au-
thenticate the efficiency of our proposed 3-dimensional
chaotic system, the circuit implementation is designed and
simulated with the NI multisim circuit simulation software,
and the simulation results are detailed in this section.

For this circuit construction, it is transformed to be

_x �
1

R1C1
y +

1
R2C1

y
2

−
1

R3C1
yz,

_y � −
1

R4C2
z
2

+
1

R5C2
yz,

_z �
1

R8C3
xy.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

A chaotic system is defined as a system that has several
causes and multiplication, addition, and differentiation, and
differentiation exists in the system equations, and a realistic

expression of this system is obtained utilizing a summation,
an integrator, and a transformer. (e relevant circuit
implementation is depicted in Figure 4 based on the above
explanations. (e state variables x, y, and z in the system (1)
correspond to the state voltages of the capacitors C1, C1, and
C3 in the simplified circuit, and the corresponding circuit
components can be selected as follows: V1 � V2 � 15V,
C1 � C2 � C3 � 10nF,
R1 � R2 � R4 � R5 � R6 � R7 � R8 � 100kΩ, R3 � 106kΩ;
LM741CN is selected as an operational amplifier; there is a
general time scale 1000 for better displaying in the
oscilloscope.

Figure 5 shows the phase trajectory of the system (1) in
the analog oscilloscope. (e area of the phase track will
change with the organization of the resistance R1, as shown
in Figure 5(d).

5. Application in Image Encryption

(e chaotic system with a linear equilibrium in this section
has a higher level of unpredictability, a larger keyspace, and a
higher level of complexity, all of which make the encryption
stronger secure in concept.
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Figure 2: Rescaled attractor of system (1) with a� 0.9, b� 1, and initial values (2, −2, 2) under the parameter c: (a) (x)-(y) and (b) signal x (t).
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Figure 3: Dynamical evolution of system (1) with a� 0.9, b� 1, and initial values (2, − 2, 2) when c is in [1, 5]: (a) bifurcation diagram and (b)
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5.1. Encryption Application with a Chaotic System. (e
control parameters and initial conditions of the system are
(Table 1) μ� 3.9999 and x0 � 0.6209, respectively, and a
standard color image is chosen for testing, as illustrated in
Figure 6. (e new chaotic system parameters are a� 0.9,
b� 1, and c� 1. (e initial conditions are set as
X0 � 0.7361, Y0 � 0.4663, Z0 � 0.1501, and U0 � 0.7653.
Table 2 describes the selected keys that were chosen. M1 and
N1 are the zeroing parameters used throughout encryption;
k1 is the average gray level of G in the original image, and the
original image k2 is the average gray level of B. Figure 6(b)
shows the encrypted image after simulation. (e image after
encryption is chaotic and fundamentally different from the
image before processing, as it can be observed. (e properly
decrypted image, which can be seen in Figure 6(c), is
identical to the original image (Table 2).

5.2. Security Analysis. Secure analysis is the most essential
and fundamental requirement for an encrypted system. In
general, a chaotic image encryption algorithm requires a
substantial keyspace, reversible encryption and decryption,
strong antiattack characteristics, and the other perfor-
mances, and then the performance of chaos-based en-
cryption is the next to determine by using the following
eligibility requirements: keyspace analysis, histogram anal-
ysis, information entropy analysis, and correlation analysis.

5.3. Keyspace Analysis. (e keyspace can approach
(1016)10 � 10160, satisfying the security level of the keyspace
(greater than 2128) using a 64-bit processor, floating-point
precision up to 10− 16. (e modified system can be observed
to be more resistant to the attacker’s comprehensive attack.
(e decrypted image cannot be acquired accurately when the
algorithm key is changed slightly, as shown in Figure 7. As a
result, the new system has a high level of key sensitivity. (e
images used throughout the investigations are 256× 256
conventional images with a 23 � 8-bit grayscale.

5.4. Histogram Analysis. (e distribution of pixel intensity
values within an image is represented by a histogram. It can
be utilized to defend against statistical attacks.(e frequency
distribution of each gray level pixel can be visually displayed
using a gray histogram, which is a statistical analytical
method. (e histogram of the image becomes smooth even
after encryption, compared to the fluctuation before en-
cryption, thus preventing the attacker from accessing the
original image information through statistical analysis,
resulting in information leakage, and ensuring information.
Figures 8(a)–8(c) are the histograms of the original image,
and Figures 8(d)–8(f ) are the histograms of the encrypted
images. It is clear that the new system can withstand a more
powerful onslaught.

5.5. Information Analysis for Entropy. (e image’s infor-
mation entropy can be used to evaluate the level of
uncertainty and randomness in the image distribution of
its pixel gray value. Typically, the higher the image’s

entropy, the more consistent the image’s gray distribu-
tion. In a grayscale image, each pixel is coded in 8 bits. As
a result, an image’s maximum entropy value is 8. (e
information entropy of the encrypted image should be
near 8, which indicates the best amount of uncertainty,
owing to a decent encryption process. To compute the
information entropy, many users use the method as
follows:

entropyH(m) � − 
H

i�1
p xi( log2 p xi( , (13)

where p(xi) represents the probability of the occurrence of
the gray value xi and H indicates the gray level of the image.
(eoretically, for a completely random digital image with a
grayscale of 256 has an evenly distributed pixel value in [0,
255], then p(xi) � 1/256 (i ∈∈[0, 255]), and the estimated
information entropy is 8 bits. If the image is encrypted, the
closer the image’s information entropy is near 8, the better
the encryption features.

5.6. Correlation Statistical Analysis. On the one hand, the
correlation level of adjacent pixels is larger when the cor-
relation coefficient degree of adjacent pixels is higher. On the
other hand, the lower the correlation, the smaller the co-
efficient. As a result, calculating the correlation coefficient
can be justified the algorithm’s security. (e lower the
correlation and the advanced security, the smaller the co-
efficient. (e correlation coefficients were calculated from
the three channels (R, G, and B) with three directions:
horizontal, vertical, and diagonal, to measure the correlation
between the original image and adjacent pixels of the ci-
phertext image; N pairs of adjacent pixels were selected from
the image, and the correlation coefficients were calculated
from the three channels (R, G, B) with three directions:
horizontal, vertical, and diagonal. To equivalence the au-
tocorrelation of an unadorned and encrypted image, we have
calculated the correlation coefficient r of each pair of pixels
by using the following formula:

rXY �
cov(X, Y)
����������
D(X)D(Y)

 ,

E(X) �
1
N



N

i�1
xi( ,

D(X) �
1
N



N

i�1
xi − E(X)( ,

cov(X, Y) �
1
N



N

i�1
xi − E(X)(  yi − E(Y)( ,

(14)

where cov(X, Y) represents the correlation and autocorre-
lation function, X and Y are the grayscale values of two
adjacent pixels in the image, and N denotes the sample. E is
the expected value operator, and D(X) represents the
variance of the variable x. (e values of rXY lie in the range
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Table 1: Algorithm key.

Key μ x0 X0 Y0 Z0 U0 M1 N1 k1 k2

Value 3.9999 0.6209 0.7361 0.4663 0.1501 0.7653 0 0 0.4761 0.1255.

Figure 6: Encryption images: (a) original pepper image; (b) encryption pepper image; (c) decryption pepper image.

Table 2: (e information entropy of the three channels in the original and encrypted on the pepper image.

Image R channel entropy G channel entropy B channel entropy
Original picture 5.6871 7.6856 4.686
Encrypted image 7.9997 7.9997 7.9998

Figure 7: Initial condition perturbation ciphertext.
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Table 3: A correlation coefficient of two adjacent pixels in the original and encrypted on the pepper image.

Image Channel Horizontal Vertical Diagonal

Original image
B 0.98645 0.98782 0.97851
G 0.99529 0.99282 0.98965
R 0.99428 0.99168 0.98792

Encrypted image
B 0.00494 −0.02531 0.00540
G −0.01262 −0.01606 0.00444
R −0.00282 −0.01656 0.00919
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Figure 8: Histogram experiment images. (a–c) Histogram of the original image. (d–f) Histogram of the encrypted image.

Table 4: Correlation coefficient test result [36].

Image Channel Horizontal Vertical Diagonal

Original image
Red 0.97489 0.98660 0.96227
Green 0.97532 0.98731 0.96377
Blue 0.95167 0.97112 0.92931

Encrypted image
Red 0.00070 0.01175 0.01539
Green 0.00855 −0.01537 −0.01660
Blue 0.00122 0.00135 0.01235
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Figure 9: Correlation and autocorrelation of R channel adjacent pixels of the pepper image and its ciphered image: (a) horizontal direction
of the pepper image; (b) vertical direction of the pepper image; (c) diagonal direction of the pepper image; (d) horizontal direction of the
pepper ciphered image; (e) vertical direction of the pepper ciphered image; (f ) diagonal direction of the pepper ciphered image.
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[−1, 1], with 1 indicating perfect correlation, −1 indicating
anticorrelation, and 0 representing no correlation.

Here, we can see from Table 3 that the correlation co-
efficients of the original image are all very close to 1, whereas
the correlation coefficients of the encrypted image are all

very close to 0, indicating that the encrypted image’s pixel
point distribution is very highly discrete.

If we compare Tables 3 and 4 with each other, we can see
some different points. In Table 3, the original correlation
coefficient values are average horizontal 99.2%, vertical
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Figure 10: Correlation and autocorrelation of G channel adjacent pixels of the pepper image and its ciphered image: (a) horizontal direction
of the pepper image; (b) vertical direction of the pepper image; (c) diagonal direction of the pepper image; (d) horizontal direction of the
pepper ciphered image; (e) vertical direction of the pepper ciphered image; (f ) diagonal direction of the pepper ciphered image.
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Figure 11: Correlation and autocorrelation of B channel adjacent pixels of the pepper image and its ciphered image: (a) horizontal direction
of the pepper image; (b) vertical direction of the pepper image; (c) diagonal direction of the pepper image; (d) horizontal direction of the
pepper ciphered image; (e) vertical direction of the pepper ciphered image; (f ) diagonal direction of the pepper ciphered image.
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99.07%, and diagonal 98.54%, and in Table 4, the original
correlation coefficient values are average horizontal 96.72%,
vertical 98.17%, and diagonal 95.18%, that is, the original
points in Table 3 are closer to 1 and the encrypted points are
also closer to 0 than Table 4. So, Table 3 indicates that the
encrypted points of distribution are highly discrete.

(e correlation and autocorrelation plots for each image
are shown in Figures 9–11. In Table 3, horizontal, vertical,
and diagonal directions provide their correlation and au-
tocorrelation coefficients. Table 3 also includes significant
data from references for comparison.

6. Conclusion

(e single nonbifurcation parameter of the system can ef-
fectively modify the amplitude and frequency of the dem-
onstrated three-dimensional chaotic system. Numerical
simulation and circuit experiment based on multisim agree
to each other by proving the phenomenon. As a typical
application, the property of image encryption is exhaustively
analyzed. With the chaotic signal from the new system, a
color image is well encrypted and decrypted in the keyspace.
Histogram and correlation of adjacent pixels are used for
showing the high encryption performance.
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[7] J. Lü, G. Chen, D. Cheng, and S. Celikovsky, “Bridge the gap
between the lorenz system and the chen system,” Interna-
tional Journal of Bifurcation and Chaos, vol. 12, no. 12,
pp. 2917–2926, 2002.

[8] Q. Yang, G. Chen, and T. Zhou, “A unified Lorenz-Type
system and its canonical form,” International Journal of Bi-
furcation and Chaos, vol. 16, no. 10, pp. 2855–2871, 2006.

[9] L. O. Chua, T. Matsumoto, and M. Komuro, “(e double
scroll family. 2. rigorous analysis of bifurcation phenomena,”
IEEE Transactions on Circuits and Systems, vol. 33, no. 11,
pp. 1097–1118, 1986.

[10] Z. Wei, P. Yu, W. Zhang, and M. Yao, “Study of hidden
attractors, multiple limit cycles from Hopf bifurcation and
boundedness of motion in the generalized hyperchaotic
Rabinovich system,” Nonlinear Dynamics, vol. 82, no. 1-2,
pp. 131–141, 2015.

[11] A. Akgul, S. Hussain, and I. Pehlivan, “A new three-di-
mensional chaotic system, its dynamical analysis and elec-
tronic circuit applications,” Optik, vol. 127, no. 18,
pp. 7062–7071, 2016.

[12] Z. Wei, V.-T. Pham, T. Kapitaniak, and Z. Wang, “Bifurcation
analysis and circuit realization for multiple-delayed Wang-
Chen system with hidden chaotic attractors,” Nonlinear
Dynamics, vol. 85, no. 3, pp. 1635–1650, 2016.

[13] S. M. Tabatabaie Nezhad, M. Nazari, and E. A. Gharavol, “A
novel dos and ddos attacks detection algorithm using arima
time series model and chaotic system in computer networks,”
IEEE Communications Letters, vol. 20, no. 4, pp. 700–703,
2016.

[14] Z. Wei, I. Moroz, J. C. Sprott, Z. Wang, and W. Zhang,
“Detecting hidden chaotic regions and complex dynamics in
the self-exciting homopolar disc dynamo,” International
Journal of Bifurcation and Chaos, vol. 27, no. 2, Article ID
1730008, 2017.

[15] J. P. Singh and B. K. Roy, “(e simplest 4-D chaotic system
with line of equilibria, chaotic 2-torus and 3-torus behaviour,”
Nonlinear Dynamics, vol. 89, no. 3, pp. 1845–1862, 2017.

[16] Z. Wang, A. Akgul, V. T. Pham, and S. Jafari, “Chaos-based
application of a novel no-equilibrium chaotic system with
coexisting attractors,” Nonlinear Dynamics, vol. 89, no. 46,
pp. 1877–1887, 2017.

[17] J. P. Singh and B. K. Roy, “Second order adaptive time varying
sliding mode control for synchronization of hidden chaotic
orbits in a new uncertain 4-D conservative chaotic system,”
Transactions of the Institute of Measurement and Control,
vol. 40, no. 13, pp. 3573–3586, 2018.

[18] J. P. Singh, K. Lochan, N. V. Kuznetsov, and B. K. Roy,
“Coexistence of single- and multi-scroll chaotic orbits in a
single-link flexible joint robot manipulator with stable spiral
and index-4 spiral repellor types of equilibria,” Nonlinear
Dynamics, vol. 90, no. 2, pp. 1277–1299, 2017.

[19] Z. Wei, I. Moroz, J. C. Sprott, A. Akgul, and W. Zhang,
“Hidden hyperchaos and electronic circuit application in a 5d
self-exciting homopolar disc dynamo,” Chaos: An Interdis-
ciplinary Journal of Nonlinear Science, vol. 27, no. 3, Article ID
033101, 2017.

[20] V. R. F. Signing and J. Kengne, “Coexistence of hidden
attractors, 2-torus and 3-torus in a new simple 4-D chaotic
system with hyperbolic cosine nonlinearity,” International
Journal of Dynamics and Control, vol. 6, pp. 421–1428, 2018.

[21] S. Vaidyanathan, A. Sambas, S. Kacar, and Ü. Çavuşoğlu, “A
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