Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBaykasoğlu, Adil
dc.contributor.authorBaykasoğlu, Cengiz
dc.date.accessioned2019-05-13T08:58:20Z
dc.date.available2019-05-13T08:58:20Z
dc.date.issued2017
dc.identifier.citationBaykasoğlu, A., Baykasoğlu, C. (2017). Multiple objective crashworthiness optimization of circular tubes with functionally graded thickness via artificial neural networks and genetic algorithms. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 231(11), 2005-2016.en_US
dc.identifier.issn0954-4062
dc.identifier.urihttps://doi.org/10.1177/0954406215627181
dc.identifier.urihttps://hdl.handle.net/11491/1116
dc.description.abstractThe objective of this paper is to develop a multiple objective optimization procedure for crashworthiness optimization of circular tubes having functionally graded thickness. The proposed optimization approach is based on finite element analyses for construction of sample design space and verification; artificial neural networks for predicting objective functions values (peak crash force and specific energy absorption) for design parameters; and genetic algorithms for generating design parameters alternatives and determining optimal combination of them. The proposed approach seaminglesly integrates artificial neural networks and genetic algorithms. Artificial neural network acts as an objective function evaluator within the multiple objective genetic algorithms. We have shown that the proposed approach is able to generate Pareto optimal designs which are in a very good agreement with the finite element results. © Institution of Mechanical Engineers.en_US
dc.language.isoeng
dc.publisherSAGE Publications Ltden_US
dc.relation.isversionof10.1177/0954406215627181en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectCrashworthiness Optimizationen_US
dc.subjectFunctionally Graded Thicknessen_US
dc.subjectGenetic Algorithmsen_US
dc.subjectThin-Walled Tubesen_US
dc.titleMultiple objective crashworthiness optimization of circular tubes with functionally graded thickness via artificial neural networks and genetic algorithmsen_US
dc.typearticleen_US
dc.relation.journalProceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Scienceen_US
dc.departmentHitit Üniversitesi, Mühendislik Fakültesi, Makine Mühendisliği Bölümüen_US
dc.authorid0000-0001-7583-7655en_US
dc.identifier.volume231en_US
dc.identifier.issue11en_US
dc.identifier.startpage2005en_US
dc.identifier.endpage2016en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster