Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorUzunoğlu, Aytekin
dc.contributor.authorAhsen, Ali S.
dc.contributor.authorDündar, Furkan
dc.contributor.authorAta, Ali
dc.contributor.authorÖztürk, Osman
dc.date.accessioned2019-05-13T09:08:03Z
dc.date.available2019-05-13T09:08:03Z
dc.date.issued2017
dc.identifier.citationUzunoğlu, A., Ahsen, A. S., Dündar, F., Ata, A., Öztürk, O. (2017). Structural, electronic, and electrochemical analyses of sputter-coated Pt and Pt–Co/GCE electrodes with ultra-low metal loadings for PEM fuel cell applications. Journal of Applied Electrochemistry, 47(2), 139-155.en_US
dc.identifier.issn0021-891X
dc.identifier.urihttps://doi.org/10.1007/s10800-016-1021-6
dc.identifier.urihttps://hdl.handle.net/11491/1925
dc.description.abstractIn this study, unsupported platinum and platinum–cobalt ultra-thin catalyst layers with varying metal loadings were prepared by a sequential magnetron sputtering technique. The deposited catalyst layers were characterized using X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), X-ray diffraction, cyclic voltammetry, and rotating disk electrode methods. Ultra-low Pt loadings, in the range of 6–22 µg cm−2, were used to examine the kinetic properties of the deposited catalyst layers. The results revealed that the highest electrochemically active surface area, 89.7 m2 g−1, was obtained for Pt:Co (1:3) nanocatalyst with an optimum Pt loading of 10 µg cm−2. The XPS and UPS results indicated that the catalyst layers prepared at elevated temperatures contained a high degree of Pt–Co interaction. It was seen that the incorporation of Co atoms into the Pt lattice improved the oxygen reduction reaction (ORR) activity of the catalysts at certain Pt:Co concentrations and sputtering temperatures. Among all catalyst layers, the highest mass and specific current density values (793.08 A g−1Pt and 1163.18 µA cm−2, respectively) were obtained from the electrode with 10 µg cm−2 Pt loading prepared at 300 °C. Although the introduction of Co atoms in the catalyst layer did not result in a systematic enhancement in the ORR performance, the Pt:Co (1:1) composition deposited at 300 °C had the highest ORR performance with a mass activity of 571.17 A g−1Pt and a specific activity of 835.59 µA cm−2 among the all Co-containing catalysts. Our results indicated that heat treatment, surface structure, and composition have profound effects on the performance of the catalyst layers.en_US
dc.language.isoeng
dc.publisherSpringer Netherlandsen_US
dc.relation.isversionof10.1007/s10800-016-1021-6en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAlloyen_US
dc.subjectCatalysten_US
dc.subjectPlatinum–Cobalten_US
dc.subjectProton Exchange Membrane Fuel Cellen_US
dc.subjectSputter Coatingen_US
dc.titleStructural, electronic, and electrochemical analyses of sputter-coated Pt and Pt–Co/GCE electrodes with ultra-low metal loadings for PEM fuel cell applicationsen_US
dc.typearticleen_US
dc.relation.journalJournal of Applied Electrochemistryen_US
dc.departmentHitit Üniversitesi, Mühendislik Fakültesi, Metalurji ve Malzeme Mühendisliği Bölümüen_US
dc.identifier.volume47en_US
dc.identifier.issue2en_US
dc.identifier.startpage139en_US
dc.identifier.endpage155en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster