dc.contributor.author | Korkmaz, Belgin | |
dc.date.accessioned | 2019-05-02T12:36:53Z | |
dc.date.available | 2019-05-02T12:36:53Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Korkmaz, B. (2017). Symmetry in complex contact manifolds. Hittite Journal of Science and Engineering, 4(2), 165-168. | en_US |
dc.identifier.issn | 2149-2123 | |
dc.identifier.uri | https://www.hjse.hitit.edu.tr/hjse/index.php/HJSE/article/view/HJSE19030000064/pdf_64 | |
dc.identifier.uri | https://hdl.handle.net/11491/449 | |
dc.description.abstract | Takahashi defined local φ-symmetry for Sasaki-an manifolds by the curvature condition that (()( , ) , )0gR Y ZWTX∇=0 for all horizontal vector fields ,,, ,X Y ZWT ([12]). There are two generalizations to contact metric mani-folds. In [2], contact metric manifolds satisfying the cur-vature condition (1.1) are called locally φ-symmetric. In [6] another definition is given. A contact metric ma-nifold is called locally φ-symmetric if characteristic reflections are local isometries. This condition leads to infinitely many curvature conditions including the abo-ve condition (1.1). Boeckx proved that ( ) ,κμ-spaces sa-tisfy this condition ([5]). This gives a set of non Sasakian examples.Symmetry for complex contact metric manifolds is studied by Blair and Mihai in [3], [4]. They defined a complex contact metric manifold to be GH-locally symmetric if the reflections in the integral submani-folds of the vertical bundle are isometries. They also proved in [4] that a complex ( ) ,κμ-space with 1κ< is GH-locally symmetric.In this paper, we will use the first generalization of local symmetry and define a complex contact metric manifold to be locally -symmetric (in order not to confuse with GH-locally symmetric) if it satisfies the curvature condition (1) and we will give a simple anddetailed proof showing that complex ( ) ,κμ-spaceswith 1κ< satisfy this condition. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Hitit Üniversitesi Fen Bilimleri Enstitüsü | en_US |
dc.relation.isversionof | 10.17350/HJSE19030000064 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Complex Contact Geometry | en_US |
dc.subject | Symmetry | en_US |
dc.subject | Local Symmetry | en_US |
dc.title | Symmetry in complex contact manifolds | en_US |
dc.type | article | en_US |
dc.relation.journal | Hittite Journal of Science and Engineering | en_US |
dc.department | Hitit Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü | en_US |
dc.authorid | 0000-0003-1958-8222 | en_US |
dc.identifier.volume | 4 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 165 | en_US |
dc.identifier.endpage | 168 | en_US |
dc.relation.publicationcategory | Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı | en_US |