dc.contributor.author | Baykasoğlu, Cengiz | |
dc.contributor.author | Akyıldız, Öncü | |
dc.contributor.author | Tunay, Merve | |
dc.contributor.author | To, Albert C. | |
dc.date.accessioned | 2021-11-01T15:05:04Z | |
dc.date.available | 2021-11-01T15:05:04Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 2214-8604 | |
dc.identifier.issn | 2214-7810 | |
dc.identifier.uri | https://doi.org/10.1016/j.addma.2020.101252 | |
dc.identifier.uri | https://hdl.handle.net/11491/7088 | |
dc.description.abstract | This paper presents a process-microstructure finite element modeling framework for predicting the evolution of volumetric phase fractions and microhardness during laser directed energy deposition (DED) additive manufacturing of Ti6Al4V. Based on recent experimental observations, the present microstructure evolution model is formulated to combine the formation and dissolution kinetics of grain boundary, Widmanstatten colony/basketweave, massive/martensitic alpha and beta phases of Ti6Al4V. The microstructure evolution algorithm is verified and embedded into a three-dimensional finite element process simulation model to simulate thermally driven phase transformations during DED processing of a Ti6Al4V thin-walled rectangular sample. The microhardness values of different locations of the part, which experience different thermal histories, are computed based on the simulated fractions and hardness values of different phases in the final microstructure. The simulated volumetric phase fractions and related microhardness distribution agree reasonably well with experimental measurements performed on the sample. Thus the proposed simulation model could be useful for designers to understand and control process-microstructure-property relationships in a DED-processed part. | en_US |
dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [217M638]; U.S. National Science FoundationNational Science Foundation (NSF) [CMMI-1434077] | en_US |
dc.description.sponsorship | This research is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under grant number 217M638 and the U.S. National Science Foundation under grant CMMI-1434077. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Additive Manufacturing | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Additive manufacturing | en_US |
dc.subject | Directed energy deposition | en_US |
dc.subject | Process model | en_US |
dc.subject | Microstructural model | en_US |
dc.subject | Solid-state phase transformation | en_US |
dc.title | A process-microstructure finite element simulation framework for predicting phase transformations and microhardness for directed energy deposition of Ti6Al4V | en_US |
dc.type | article | en_US |
dc.department | [Belirlenecek] | en_US |
dc.authorid | Baykasoglu, Cengiz / 0000-0001-7583-7655 | |
dc.authorid | Tunay, Merve / 0000-0003-4402-1535 | |
dc.authorid | To, Albert / 0000-0003-2893-8378 | |
dc.identifier.volume | 35 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.department-temp | [Baykasoglu, Cengiz; Tunay, Merve] Hitit Univ, Dept Mech Engn, TR-19030 Corum, Turkey; [Akyildiz, Oncu] Hitit Univ, Dept Met & Mat Engn, TR-19030 Corum, Turkey; [To, Albert C.] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA | en_US |
dc.contributor.institutionauthor | Baykasoğlu, Cengiz | |
dc.identifier.doi | 10.1016/j.addma.2020.101252 | |
dc.authorwosid | Baykasoglu, Cengiz / AAS-8420-2020 | |
dc.authorwosid | Tunay, Merve / AAP-4066-2021 | |
dc.description.wospublicationid | WOS:000576649400001 | en_US |
dc.description.scopuspublicationid | 2-s2.0-85085259615 | en_US |