Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBaykasoğlu, Cengiz
dc.contributor.authorAkyıldız, Öncü
dc.contributor.authorTunay, Merve
dc.contributor.authorTo, Albert C.
dc.date.accessioned2021-11-01T15:05:04Z
dc.date.available2021-11-01T15:05:04Z
dc.date.issued2020
dc.identifier.issn2214-8604
dc.identifier.issn2214-7810
dc.identifier.urihttps://doi.org/10.1016/j.addma.2020.101252
dc.identifier.urihttps://hdl.handle.net/11491/7088
dc.description.abstractThis paper presents a process-microstructure finite element modeling framework for predicting the evolution of volumetric phase fractions and microhardness during laser directed energy deposition (DED) additive manufacturing of Ti6Al4V. Based on recent experimental observations, the present microstructure evolution model is formulated to combine the formation and dissolution kinetics of grain boundary, Widmanstatten colony/basketweave, massive/martensitic alpha and beta phases of Ti6Al4V. The microstructure evolution algorithm is verified and embedded into a three-dimensional finite element process simulation model to simulate thermally driven phase transformations during DED processing of a Ti6Al4V thin-walled rectangular sample. The microhardness values of different locations of the part, which experience different thermal histories, are computed based on the simulated fractions and hardness values of different phases in the final microstructure. The simulated volumetric phase fractions and related microhardness distribution agree reasonably well with experimental measurements performed on the sample. Thus the proposed simulation model could be useful for designers to understand and control process-microstructure-property relationships in a DED-processed part.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [217M638]; U.S. National Science FoundationNational Science Foundation (NSF) [CMMI-1434077]en_US
dc.description.sponsorshipThis research is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under grant number 217M638 and the U.S. National Science Foundation under grant CMMI-1434077.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.ispartofAdditive Manufacturingen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAdditive manufacturingen_US
dc.subjectDirected energy depositionen_US
dc.subjectProcess modelen_US
dc.subjectMicrostructural modelen_US
dc.subjectSolid-state phase transformationen_US
dc.titleA process-microstructure finite element simulation framework for predicting phase transformations and microhardness for directed energy deposition of Ti6Al4Ven_US
dc.typearticleen_US
dc.department[Belirlenecek]en_US
dc.authoridBaykasoglu, Cengiz / 0000-0001-7583-7655
dc.authoridTunay, Merve / 0000-0003-4402-1535
dc.authoridTo, Albert / 0000-0003-2893-8378
dc.identifier.volume35en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.department-temp[Baykasoglu, Cengiz; Tunay, Merve] Hitit Univ, Dept Mech Engn, TR-19030 Corum, Turkey; [Akyildiz, Oncu] Hitit Univ, Dept Met & Mat Engn, TR-19030 Corum, Turkey; [To, Albert C.] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USAen_US
dc.contributor.institutionauthorBaykasoğlu, Cengiz
dc.identifier.doi10.1016/j.addma.2020.101252
dc.authorwosidBaykasoglu, Cengiz / AAS-8420-2020
dc.authorwosidTunay, Merve / AAP-4066-2021
dc.description.wospublicationidWOS:000576649400001en_US
dc.description.scopuspublicationid2-s2.0-85085259615en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster