Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorVarçın, Fatih
dc.contributor.authorErbay, Hasan
dc.contributor.authorÇetin, Eyüp
dc.contributor.authorÇetin, İhsan
dc.contributor.authorKültür, Turgut
dc.date.accessioned2021-11-01T15:06:03Z
dc.date.available2021-11-01T15:06:03Z
dc.date.issued2021
dc.identifier.issn0897-1889
dc.identifier.issn1618-727X
dc.identifier.urihttps://doi.org/10.1007/s10278-020-00402-5
dc.identifier.urihttps://hdl.handle.net/11491/7478
dc.description.abstractLumbar spondylolisthesis (LS) is the anterior shift of one of the lower vertebrae about the subjacent vertebrae. There are several symptoms to define LS, and these symptoms are not detected in the early stages of LS. This leads to disease progress further without being identified. Thus, advanced treatment mechanisms are required to implement for diagnosing LS, which is crucial in terms of early diagnosis, rehabilitation, and treatment planning. Herein, a transfer learning-based CNN model is developed that uses only lumbar X-rays. The model was trained with 1922 images, and 187 images were used for validation. Later, the model was tested with 598 images. During training, the model extracts the region of interests (ROIs) via Yolov3, and then the ROIs are split into training and validation sets. Later, the ROIs are fed into the fine-tuned MobileNet CNN to accomplish the training. However, during testing, the images enter the model, and then they are classified as spondylolisthesis or normal. The end-to-end transfer learning-based CNN model reached the test accuracy of 99%, whereas the test sensitivity was 98% and the test specificity 99%. The performance results are encouraging and state that the model can be used in outpatient clinics where any experts are not present.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.ispartofJournal Of Digital Imagingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLumbar spondylolisthesisen_US
dc.subjectConvolutional neural networksen_US
dc.subjectYoloen_US
dc.subjectTransfer learningen_US
dc.titleEnd-To-End Computerized Diagnosis of Spondylolisthesis Using Only Lumbar X-raysen_US
dc.typearticleen_US
dc.department[Belirlenecek]en_US
dc.authoridVarcin, Fatih / 0000-0002-5100-3012
dc.identifier.volume34en_US
dc.identifier.issue1en_US
dc.identifier.startpage85en_US
dc.identifier.endpage95en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.department-temp[Varcin, Fatih] Kirikkale Univ, Fac Engn, Dept Comp Engn, TR-71451 Kirikkale, Turkey; [Erbay, Hasan] Univ Turkish Aeronaut Assoc, Fac Engn, Dept Comp Engn, TR-06790 Ankara, Turkey; [Cetin, Eyup] Van Yuzuncu Yil Univ, Fac Med, Dept Neurosurg, TR-65080 Van, Turkey; [Cetin, Ihsan] Hitit Univ, Dept Med Biochem, Fac Med, TR-19040 Corum, Turkey; [Kultur, Turgut] Kirikkale Univ, Fac Med, Dept Phys Med & Rehabil, TR-71450 Kirikkale, Turkeyen_US
dc.contributor.institutionauthorÇetin, İhsan
dc.identifier.doi10.1007/s10278-020-00402-5
dc.authorwosidVarcin, Fatih / ABE-7006-2020
dc.description.wospublicationidWOS:000607060000003en_US
dc.description.scopuspublicationid2-s2.0-85099399721en_US
dc.description.pubmedpublicationidPubMed: 33432447en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster