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Abstract: Catalytic reactions of α, β -conjugated carbonyl compounds have been a practical tool towards the synthesis
of different useful heterocyclic compounds. Despite the numerous reactions with carbon-carbon double bond conjugated
carbonyls, reactions of acetylenic carbonyls are limited. In this study, efficient dioxole synthesis was carried out
via acetylenic aldehydes and butadiene formation was preferred over cyclopropene formation via acetylenic esters as
different functional groups on these substrates change the product distribution. Both reaction conditions (such as
solvent and temperature) and electrophilic structure of metal carbenoids alter the product distribution; acceptor (A),
donor-acceptor (DA), and acceptor-acceptor (AA) functionalized diazo compounds yield different product types over
different mechanisms.
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1. Introduction
Carbene transfer to appropriate substrates is a very practical tool for the construction of carbon frame-
works with increased functional and structural complexity.1−4 Among these methodologies the formal [2+1]
annulations5−11 of α, β -unsaturated carbonyl compounds have been widely applied in enantioselective con-
struction of rings such as epoxides, aziridines, and cyclopropane and cyclopropene.12−19 The other reaction
probabilities are formations of dioxolane, dihydrofuran, furan, and dioxole derivatives.15,16,20−27 Extending the
conjugation to α, β, γ, δ -positions might allow the synthesis of dihydrobenzoxepines28,29 and other large ring
sizes (Scheme 1).

After Spencer’s25−27 pioneering work, several studies on the catalyzed reactions of ene/poly-ene-carbonyls
with diazo compounds have been realized.28−45 Despite this enormous amount of work, carbenoid reactions
with conjugated acetylenic carbonyls are very limited46−49 and the reaction of 1,3-diphenyl-2-yl-1-one with
ethyl diazoacetate50 is one of the unique examples related to our study. Generally, in these reactions, the
relative nucleophilicity differences between carbon-carbon multiple bonds, which are related to the adjacent
groups and electrophilicity of metal carbenoids, being acceptor (A), donor-acceptor (DA), or acceptor-acceptor
(AA), may contribute to the distribution of the products.

As part of our ongoing research project on ylide reactions and their applications in organic synthesis,30−36

we initially aimed to determine the structural influence of different acetylenic carbonyls on product distribution.
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Scheme 1. Possible products from the reactions of α, β -conjugated carbonyl compounds with diazocarbonyls.

2. Results and discussion

In order to understand the effect of carbonyl functions on the substrates, we studied the reactions of four
different conjugated yn-carbonyls, 2-octynal (1a), phenylpropargyl aldehyde (1b), ethyl 2-pentynoate (1c), and
ethyl phenylpropiolate (1d), with dimethyl diazomalonate (2A). Copper dimethoxycarbonylcarbenoid reactions
of these four α ,β -acetylenic aldehyde/esters (1a–1d) with diazo compound 2A gave the results summarized
in Table 1.

In the Cu(acac)2 catalyzed reactions of dimethyl diazomalonate (2A) with acetylenic aldehydes (1a, 1b),
the major isolated products were 1,3-dioxolane derivatives (3a–3b), which were observed as syn/anti isomers
in the crude mixture with ratio 1:1.2 for 3a and 1:3 for 3b. (Table 1, entries i and ii).

The plausible mechanism for the formation of 3a and 3b may involve intermolecular trapping of the
carbonyl ylide intermediate (from aldehydes and 2A) by another mole of 1a via [3+2] cycloaddition reaction
(Scheme 2).15−17

Scheme 2. Plausible mechanism for the formation of 1,3-dioxolane derivatives.
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Table 1. Cu(acac)2 -catalyzed reactions of α, β -acetylenic aldehyde/esters (1a–1d).

Entry 1 R1 R2 3 4 5 6
GC ratio, %a

i a -C5H11 -H 80 (1:1.2)b 20 - -
ii b -Ph -H 85 (1:3)b - - -
iii c -C2H5 -OC2H5 - - - 90
iv d -Ph -OC2H5 - - 20 75

a Relative product ratios were determined by gas chromatography (GC); there are also some minor undetermined
products. b Obtained as two isomers (syn/anti).

Besides 1,3-dioxolane derivative (3a), an oxabicycloheptadiene derivative (4a) was also observed in
the reaction of 1a. The most appropriate mechanism for this compound is the cycloaddition of transient
cyclopropene (5a) to another mole of 1a (Scheme 3). This oxabicycloheptadiene derivative could not be observed
in the reaction of 1b, probably because of the steric hindrance caused by the phenyl group to prevent [4+2]
cycloaddition.

Scheme 3. Formation of oxabicycloheptadiene derivative.

In the analogous reactions of acetylenic esters 1c and 1d with 2A (Table 1, entries iii and iv), surprisingly,
novel butadiene derivatives (6c, 6d), containing five ester groups, were obtained clearly in good yields. Only
from the reaction of ethyl phenylpropiolate (1d), cyclopropene derivative 5d was also isolated and its structure
was determined by single crystal X-ray analysis (Figure).

As observed clearly, changing the carbonyl functionality from aldehyde to ester totally changes the product
distribution. In reactions of both 1c and 1d, butadiene derivative was obtained as a major product (90% yield
for 6c and 70% yield for 6d). In these reactions, the cyclopropene derivative was one of the expected products,
but it was isolated only from the reaction of 1d. In this reaction, the phenyl substituent might cause an increased
stability that postpones the conversion of cyclopropene into the butadiene derivative that was obtained as a
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Figure. X-ray crystal structure of 5d.

major product in reactions of both 1c and 1d. When the reaction of 1d was performed with excess (three
equivalents) diazo (2A) under longer reaction time, the only isolated product was butadiene derivative 6d; no
cyclopropene derivative was observed and the yield of 6d was increased to 90%. From this point of view, the
cyclopropene derivative helps to suggest a mechanism for the formation of butadiene derivatives based on the
ring opening of a cyclopropene as depicted in Scheme 4.

For the formation of butadiene derivatives, route I is based on the catalytic ring opening of a bicy-
clo[1.1.0]butan derivative that may be formed from the reaction of transient cyclopropene with a new mole of
2A. The other two mechanisms, II and III, were claimed to be realized via the ring opening of the intermediate
cyclopropene via addition of a new mole of copper carbenoid. In route II, the carbenoid carbon attacked most
probably the ester-substituted sp2 carbon atom of the cyclopropenone to afford the intermediate, which leads
to butadiene derivatives 6c and 6d via ring opening.

Another suggestion is route IV, which is represented by the rearrangement of cyclopropene to a furan
derivative51,52 and cyclopropanation with another mole of copper carbenoid53 followed by ring opening. This
mechanism was adapted from a Cu(OTf)2 -catalyzed isomerization of functionalized cyclopropenes to furan
derivatives, which was reported in 2014.51

One of our recent studies35 also showed the synthesis of an interesting disubstituted amide analogue of a
butadiene derivative starting from α ,β -conjugated amides. In that study, the cisoid structure of the butadiene
derivative was confirmed with single-crystal X-ray analysis. On the basis of these initial results, a number of
different catalysts, solvents, and operating procedures were tested to optimize the reaction conditions of metal
carbenoids with acetylenic carbonyls. Thus, we realized a series of experiments for the reaction of 1a with 2A
(Table 2). After these reactions, Cu(acac)2 was seen as an effective catalyst in both benzene and dichloroethane
solvents at 80 ◦C.

As expected, the diazo compound 2A with Rh2 (OAc)4 in CH2Cl2 at 45 ◦C (condition V) could not
yield the corresponding carbenoid since dimethyl diazomalonate (2A) requires relatively elevated temperatures
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Scheme 4. Formation mechanisms for the butadiene derivatives via cyclopropane derivative.

Table 2. Dimethyl diazomalonate (2A) and 2-octynal (1a) reaction under different conditions.

Condition Catalyst Solvent Temp. (◦C) 3a (syn/anti) 4a
GC ratio (%)a

I Cu(acac)2 Benzene 80 80 (1:1) 20
II Cu(acac)2 Dichloroethane 80 82 (1.2:1) 18
III Rh2(OAc)4 Benzene 80 80 (1:1) 20
IV Rh2(OAc)4 Dichloroethane 80 Very low Very low
V Rh2(OAc)4 Dichloromethane 40 No reaction product
aRelative product ratios were determined by gas chromatography (GC).

to produce reactive carbene. Also in dichloroethane (condition IV), there was no satisfying yield although the
temperature was 80 ◦C; however, the Rh2 (OAc)4 catalyst worked well in benzene at 80 ◦C (condition III)
and yielded the same results as Cu(acac)2 . From these results, it could be said that Cu(acac)2 reactions are
not affected by the solvent; dichloroethane and benzene both worked well since their working temperature is 80
◦C. On the contrary, Rh2 (OAc)4 reactions are affected more by the solvent type.

In order to check the effect of the substituents on the diazo compound, we studied the reactions of
2-octynal (1a) with different diazo carbonyl compounds: 1-diazo-1-phenylpropan-2-on (2B), (E) -methyl 2-
diazo-4-phenyl-3-enoat (2C), and ethyl diazoacetate (2D). In these attempts dichloromethane was used as a
solvent at 40 ◦C in order to prevent the probable decomposition of reactive diazo compounds at elevated
temperatures. The results of performed reactions are summarized in Table 3.
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Table 3. Rh2 (OAc)4 -catalyzed reactions of 2-octynal with diazocarbonyls (2A–2D).

Diazo (2) R3 R4 7 8 9 10
GC ratio, %a

B -COCH3 Ph 76 (4:3)b 24 (4:3:2:2)b - -
C -CO2CH3 -CH=CHPh 23 - 75 (3:1)b -
D -CO2C2H5 -H - 62 (2:2:1:1)b - 33

a Relative product ratios were determined by gas chromatography (GC); there are also some minor undetermined
products. b Obtained as isomer mixtures.

Despite the undesirable result with diazo carbonyl 2A due to its very stable character, other diazo
carbonyls (2B–2D) resulted in satisfactory yields when the Rh2 (OAc)4 catalyst was used in dichloromethane
at 40 ◦C. Since the reactions of donor-acceptor (DA) diazo compounds give better results with Rh(II) catalyst
in dichloromethane,34 Rh2 (OAc)4 was preferred over Cu(acac)2 for the following reactions. The reaction of 2-
octynal (1a) and donor-acceptor (DA) 1-diazo-1-phenylpropan-2-one (2B) resulted in the formation of epoxide
(7B) and 1,3-dioxolane isomers (8B). When the reaction was performed with another DA, diazo carbonyl (E) -
methyl 2-diazo-4-phenylbut-3-enoate (2C), dihydrofuran derivative 9C was observed as the major product along
with epoxide derivative 7C. Because of the presence of a vinyl group in diazocarbonyl 2C, the intermediate
carbonyl ylide could realize a [1,5]-electrocylization reaction to produce dihydrofuran derivative 9C (Scheme 5).

Scheme 5. Formation mechanism for the dihydrofuran derivative 9C.

The reaction of 2-octynal (1a) and ethyl diazoacetate (2D), which yielded furan derivative 10D near
dioxolane isomers 8D, was highly surprising. The plausible mechanism for the formation of this furan derivative
(10D) may involve epoxide ring formation of the corresponding carbonyl ylide followed by rearrangement to a
five-membered ring and 1,2-hydride shift (Scheme 6).
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Scheme 6. Formation mechanism for the furan derivative 10D.

In the present literature, there is only one report about the copper(I) iodide-catalyzed [4+1] cycloaddition
reaction of α ,β -acetylenic ketones with diazoacetates producing 2,3,5-trisubstituted furans in fair to good
yields.50 It is thus reported herein for the first time that polysubstituted furan 10D could also be obtained
from the reactions of α ,β -acetylenic aldehyde with ethyl diazoacetate using rhodium catalyst, albeit with
modest yield. In spite of the used catalyst, Rh2 (OAc)2 , which was claimed to be an inefficient one in the
previous report,50 formation of these furan derivatives was highly surprising. Another interesting point was the
preferential migration of ethoxycarbonyl function being different from the previous report.

It is noteworthy that two acetylenic esters, 1b and 1c, did not realize any product over carbonyl-ylide
formation but easily gave polysubstituted butadienes (6) in good yields over cyclopropene derivatives.

In conclusion, the catalytic reactions between acetylenic carbonyl compounds and diazocarbonyls have
been presented. Aldehyde and ester functionalities on the acetylenic carbonyl had a drastic impact on the
product distribution; for example, acetylenic esters preferred to form a cyclopropane ring and/or derivatives
under the studied conditions. Thus, novel butadiene derivatives 6c and 6d were obtained efficiently by the
approach used. Moreover, oxirane (7B, 7C) and dihydrofuran (9C) derivatives could be synthesized in relatively
high yields with a similar method.

Furthermore, subsequent derivatives of the synthesized compounds may be used as valuable intermediates,
especially in the synthesis of natural products and their analogues. The recent literature shows that alkyne
functionalized dioxoles give diketone derivatives to be further used for the synthesis of novel naphthalene
derivatives with pharmaceutical activity.54,55 Penta-ester substituted butadienes might also allow the synthesis
of different polymer materials after the hydrolysis of ester groups.56

3. Experimental

3.1. General
Dimethyl diazomalonate was prepared according to the literature.57 All other reagents and solvents were
supplied commercially as reagent grade. Flash column chromatography was carried out on silica gel 60 (70–
230 mesh). NMR spectra were recorded in CDCl3 at ambient temperature on a Bruker AC (1H: 250 MHz;
13C: 60 MHz) and Varian Unity Inova (1H: 500 MHz; 13C: 125 MHz). TMS was always applied as the
internal standard. Data are reported as follows: chemical shift, multiplicity (s: singlet, brs: broad singlet,
d: doublet, dd: doublet of doublets, t: triplet, q: quartet, m: multiplet), coupling constants (J in Hz), and
integration. GC/MS: Hewlett-Packard instrument, with HP-1 capillary column (24 m) packed with cross-linked
(phenylmethyl)siloxane. Column temperature program: Isothermal at 100 ◦C for 5 min, heated to 290 ◦C at
20 ◦C/min and kept isothermal for 10 min. Retention times (tR) of the synthesized compounds were given in
minutes. IR spectra: PerkinElmer Spectrum One. Reported melting points are uncorrected.
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3.2. General procedure for the catalytic reactions of dimethyl diazomalonate (2A) with α ,β -
acetylenic carbonyls

To a solution of α ,β -acetylenic carbonyl (1a-1d, 6.6 mmol) in benzene (10 mL) was added Cu(acac)2 (0.02
mmol) and the mixture was heated at reflux. A solution of dimethyl diazomalonate (3.3 mmol) in benzene (5 mL)
was added dropwise over 3 h. When the IR spectrum indicated total consumption of dimethyl diazomalonate
(absence of characteristic diazo band at 2130 cm−1) , the reaction mixture was concentrated under reduced
pressure and subjected to flash silica gel chromatography. Different types of products (3–6) were obtained from
each reaction.

3.2.1. Dimethyl 2,5-di(hept-1-yn-1-yl)-1,3-dioxolane-4,4-dicarboxylate (3a)

Obtained as two isomers with the ratio of 1:1.2 (totally 80% GC ratio). Minor isomer was isolated alone with
33% yield and major isomer was observed with compound 4a. However, they could not be identified as E or
Z .

3.2.1.1. Major isomer of 3a
1H NMR (500 MHz, CDCl3) : 5.68 (t, J = 1.5 Hz, 1H), 5.34 (t, J = 2.0 Hz, 1H), 3.85 (bs, 6H), 2.26 (td, J

= 7.4 and 1.5 Hz, 2H), 2.21 (td, J = 7.3 and 1.2 Hz, 2H), 1.56–1.47 (m, 4H), 1.39–1.29 (m, 8H), 0.90 (t, J =
7.3 Hz, 6H). 13C NMR (125 MHz CDCl3) : 167.1, 166.0, 95.0, 90.9, 90.0, 89.2, 86.4, 75.7, 71.9, 53.5, 53.1, 31.0,
30.9, 27.9, 27.6, 22.1 (2C), 18.8 (2C), 13.9 (2C). tR (min): 13.85; EI-MS (m/z) 377 (4, M+) , 319 (33), 307
(1), 286 (3), 254 (43), 222 (21), 195 (18), 139 (100), 135 (34), 59 (22).

3.2.1.2. Minor isomer of 3a
1H NMR (500 MHz, CDCl3) : 6.00 (t, J = 1.3 Hz, 1H), 5.64 (t, J = 1.9 Hz, 1H), 3.84 (s, 3H), 3.81 (s, 3H), 2.21
(td, J = 7.2 and 1.4 Hz, 2H), 2.19 (td, J = 7.3 and 2.2 Hz, 2H), 1.52–1.45 (m, 4H), 1.35–1.28 (m, 8H), 0.89 (t,
J = 7.3 Hz, 6H). 13C NMR (125 MHz, CDCl3) : 165.7, 165.3, 94.2, 90.0, 88.8, 85.9, 72.5, 71.3, 70.5, 52.4, 52.0,
29.9 (2C), 26.9, 26.6, 21.1 (2C), 17.7, 17.6, 12.9 (2C). tR (min): 13.95; EI-MS (m/z) 377 (4, M+) , 319 (33),
307 (1), 286 (3), 254 (43), 222 (21), 195 (18), 139 (100), 135 (34), 59 (22). HRMS 379.2108 [C21H30O6 + H],
calcd. 379.2121.

3.2.2. Dimethyl 5-formyl-4,6-dipentyl-3-oxabicyclo[4.1.0]hepta-1,4-diene-7,7-dicarboxylate (4a)

Obtained in a mixture with the minor isomer of 3a (GC ratio of 4a was observed as 20% in the mixture). 1H
NMR (500 MHz, CDCl3) : 9.99 (s, 1H), 5.80 (brs, 1H), 3.85 (s, 3H), 3.83 (s, 3H), 2.20 (td, J = 7.9 and 2.0 Hz,
2H), 1.56–1.47 (m, 6H), 1.39–1.27 (m, 8H), 0.88 (t, J = 7.3 Hz, 6H). 13C NMR (125 MHz, CDCl3) : 185.2,
167.1, 166.8, 154.3, 137.4, 94.2, 77.3, 73.4, 72.1, 53.4, 53.3, 32.0, 30.9, 30.2, 29.7, 28.0, 25.8, 22.2, 18.8, 13.9
(2C). tR (min): 14.55; EI-MS (m/z) 319 (65, M+) , 291 (100), 259 (25), 231 (15), 119 (26), 105 (15), 91 (30),
59 (20).

3.2.3. Dimethyl 2,5-bis(phenylethynyl)-1,3-dioxolane-4,4-dicarboxylate (3b)

Obtained as dark orange oil with 79% yield (with 85% GC ratio) as two isomers with the ratio of 1:3.
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3.2.3.1. Major isomer of 3b
1H NMR (500 MHz, CDCl3) : 7.41–7.44 (m, 4H), 7.40–7.33 (m, 6H), 6.35 (s, 1H), 5.98 (s, 1H), 3.89 (s, 3H),
3.85 (s, 3H). 13C NMR (125 MHz, CDCl3) : 166.4, 166.1, 132.0 (2C), 131.9 (2C), 129.4, 129.3, 128.5, 128.4
(3C), 121.2, 121.0, 95.7, 89.6, 88.0, 87.1, 80.9, 71.8, 53.7, 53.4. tR (min): 19.20; EI-MS (m/z) 390 (2, M+) ,
331 (5), 244 (35), 129 (30), 114 (100), 59 (10). HRMS 391.1190 [C23H18O6 + H], calcd. 391.1182.

3.2.3.2. Minor isomer of 3b
1H NMR (500 MHz, CDCl3) : 7.49–7.44 (m, 4H), 7.40–7.33 (m, 6H), 6.10 (s, 1H), 5.77 (s, 1H), 3.90 (s, 3H),
3.87 (s, 3H). 13C NMR (125 MHz, CDCl3) : 166.5, 165.7, 132.1, 131.9 (2C), 131.8, 129.4, 129.2, 129.1, 128.3,
128.2 (2C), 121.4, 121.3, 95.9, 89.5, 88.0, 87.4, 82.4, 81.7, 72.1, 53.6, 53.4. tR (min): 19.20; EI-MS (m/z) 390
(2, M+) , 331 (5), 244 (35), 129 (30), 114 (100), 59 (10). HRMS 391.1190 [C23H18O6 + H], calcd 391.1182.

3.2.4. 2-Ethyl 1,1,4,4-tetramethyl 3-ethylbuta-1,3-diene-1,1,2,4,4-pentacarboxylate (6c)

Obtained as orange oil with 81% yield (with 90% GC ratio). 1H NMR (250 MHz, CDCl3) : 4.20 (q, J = 7.0
Hz, 2H), 3.84 (s, 3H), 3.81 (s, 3H), 3.72 (s, 3H), 3.66 (s, 3H), 2.55–2.30 (m, 2H), 1.22 (t, J = 6.9 Hz, 3H), 1.02
(t, J = 7.4 Hz, 3H). 13C NMR (125 MHz, CDCl3) : 164.4, 164.1, 162.9 (2C), 162.0, 161.4, 153.3, 130.7, 124.8,
61.4, 52.0 (2C), 51.5, 51.4, 28.1, 12.8, 11.0. tR (min): 13.17; EI-MS (m/z) 386 (1, M+) , 327 (100), 323 (10),
313 (12), 249 (10), 221 (10), 191 (7), 163 (5), 105 (4), 77 (5), 59 (7). HRMS 387.1284 [C17H22O10 + H],
calcd 387.1291.

3.2.5. 2-Ethyl 1,1-dimethyl 3-phenylcycloprop-2-ene-1,1,2-tricarboxylate (5d)

Obtained as light yellow oil with 16% yield (with 20% GC ratio). 1H NMR (250 MHz, CDCl3) : 7.79 (d, J =
5.8 Hz, 2H), 7.50 (d, J = 6.7 Hz, 3H), 4.38 (q, J = 7.1 Hz, 2H), 3.74 (s, 6H), 1.38, (t, J = 7.0 Hz, 3H) ppm.
13C NMR (CDCl3 , 125 MHz): δ 165.9, 165.0 (2C), 142.2, 131.4, 128.9, 127.7, 126.4, 113.0, 59.2, 58.2, 51.5,
51.4, 14.1 ppm. tR (min): 12.95, EI-MS (m/z) 304 (65, M+) , 289 (62), 259 (13), 245 (41), 229 (77), 227 (16),
203 (31), 173 (25), 129 (74), 105 (100), 59 (5). HRMS 305.1031 [C16H16O6 + H], calcd. 305.1025.

3.2.6. 2-Ethyl 1,1,4,4-tetramethyl 3-phenylbuta-1,3-diene-1,1,2,4,4-pentacarboxylate (6d)

Obtained as dark orange oil with 67 % yield (with 75% GC ratio). 1H NMR (250 MHz, CDCl3) : 7.43–7.34 (m,
5H), 4.20 (q, J = 7.1 Hz, 2H), 3.88 (s, 3H), 3.78 (s, 3H), 3.69 (s, 3H), 3.60 (s, 3H), 1.17 (t, J = 7.1 Hz, 3H)
ppm. 13C NMR (125 MHz, CDCl3) : 166.2, 164.9, 164.0, 163.3, 162.8, 149.4, 142.0, 136.1, 133.0, 130.0, 128.8
(2C), 128.6 (2C), 127.6, 62.7, 53.2 (2C), 52.9, 52.7, 13.9 ppm. tR (min): 14.71; EI-MS (m/z) 434 (1, M+) ,
389 (14), 375 (100), 329 (46), 255 (17), 203 (8), 153 (8), 129 (8), 59 (5). HRMS 435.1272 [C21H23O10 + H],
calcd. 435.1291.

3.3. General procedure for the catalytic reactions of 2-octynal (1a) with different diazo carbonyls

To a solution of 2-octynal (6.6 mmol) (1a) in dichloromethane (10 mL) was added Rh2 (OAc)4 (0.02 mmol) and
the mixture was heated at reflux. A solution of the corresponding diazo carbonyl (3.3 mmol) in dichloromethane
(5 mL) was added dropwise over 3 h. When the IR spectrum indicated total consumption of the characteristic
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diazo band, the reaction mixture was concentrated under reduced pressure and subjected to flash silica gel
chromatography. Different types of products (7–10) were obtained from each reaction.

3.3.1. 1-(3-(Hept-1-yn-1-yl)-2-phenyloxiran-2-yl)ethanone (7B)

Obtained as yellow oil with 76% GC ratio as two isomers with the ratio of 1.5:2. Only the isomer major isomer
was isolated alone from the mixture but it could not be identified as E or Z .

3.3.1.1. Major isomer of 7B
1H NMR (500 MHz, CDCl3) : 7.51–7.49 (m, 2H), 7.40–7.34 (m, 3H), 3.85 (t, J = 1.3 Hz, 1H), 2.18 (s, 3H),
1.99 (td,J = 6.7 and 1.3 Hz, 2H), 1.23–1.11 (m, 4H), 1.05–1.00 (m, 2H), 0.81 (t,J = 7.3 Hz, 3H). 13C NMR
(125 MHz, CDCl3) : 203.7, 132.1, 128.5 (2C), 127.9 (2C), 127.8, 89.4, 73.4, 68.6, 51.5, 30.5, 27.3, 22.0, 18.5,
13.8.tR : 11.33; EI-MS (m/z) : 256 (M+ , 57), 213 (13), 185 (7), 129 (13), 105 (100), 77 (53).

3.3.1.2. Minor isomer of 7B
tR (min): 11.71; EI-MS (m/z) : 256 (M+ , 57), 213 (13), 185 (7), 129 (13), 105 (100), 77 (53).

3.3.2. 1-(2,5-Di(hept-1-yn-1-yl)-4-phenyl-1,3-dioxolan-4-yl)ethanone (8B)

Obtained as yellow oil with 18% yield (with 24% GC ratio) as four isomers with the ratio of 1:1:1.5:2. All
isomers were isolated together in one fraction and the structures were tentatively identified.

3.3.2.1. Major isomer of 8B
1H NMR (500 MHz, CDCl3) : 7.61–7.32 (m, 5H), 5.49 (brs, 1H), 4.63–4.59 (m, 1H), 2.23 (s, 3H), 1.74–1.53 (m,
8H), 1.52–1.48 (m, 4H), 1.38–1.19 (m, 4H), 0.89 (t, J = 7.3 Hz, 6H). tR (min): 15.95; EI-MS (m/z) : 337 (20),
256 (3), 213 (8), 171 (1), 157 (7), 105 (100), 93 (8), 77 (19).

3.3.2.2. Other major isomer of 8B
1H NMR (500 MHz, CDCl3) : 7.61–7.32 (m, 5H), 6.39 (t, J = 2.0 Hz, 1H), 5.04 (s, 1H), 2.20 (s, 3H), 1.74–1.53
(m, 8H), 1.52–1.48 (m, 4H), 1.38–1.19 (m, 4H), 0.92–0.81 (m, 6H). tR (min): 15.75; EI-MS (m/z) : 337 (20),
256 (3), 213 (8), 171 (1), 157 (7), 105 (100), 93 (8), 77 (19).

3.3.2.3. Minor isomer of 8B
1H NMR (500 MHz, CDCl3) : 7.61–7.32 (m, 5H), 5.69 (t, J = 2.0 Hz, 1H), 4.25 (s, 1H), 2.43 (s, 3H), 1.74–1.53
(m, 8H), 1.52–1.48 (m, 4H), 1.38–1.19 (m, 4H), 0.92–0.81 (m, 6H). tR (min): 15.38; EI-MS (m/z) : 337 (20),
256 (3), 213 (8), 171 (1), 157 (7), 105 (100), 93 (8), 77 (19).

3.3.2.4. Minor isomer of 8B
1H NMR (500 MHz, CDCl3) : 7.61–7.32 (m, 5H), 5.68 (t, J = 1.9 Hz, 1H), 4.71 (s, 1H), 2.31 (s, 3H), 1.74–1.53
(m, 8H), 1.52–1.48 (m, 4H), 1.38–1.19 (m, 4H), 0.92–0.81 (m, 6H). tR (min): 15.40; EI-MS (m/z) : 337 (20),
256 (3), 213 (8), 171 (1), 157 (7), 105 (100), 93 (8), 77 (19).
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3.3.3. (E)-Methyl 3-(hept-1-yn-1-yl)-2-styryloxirane-2-carboxylate (7C)

The product (with 23% GC ratio) was isolated with the starting compound 2-octynal. 1H NMR (500 MHz,
CDCl3) : 7.37–7.15 (m, 5H), 6.67 (d,J = 16.3 Hz, 1H), 6.58 (d, J = 16.3 Hz, 1H), 3.84 (s, 3 H), 3.43 (t, J =
1.7 Hz, 1H), 2.19 (td, J = 7.3 and 1.7 Hz, 2H), 1.39–1.25 (m, 6 H), 0.78 (t, J = 7.2 Hz, 3H). tR (min): 13.09;
EI-MS (m/z) : 298 (M+ , 15), 283 (12), 241 (7), 152 (10), 131 (11), 115 (22), 105 (100), 77 (24), 55 (10).

3.3.4. Methyl 5-(hept-1-yn-1-yl)-4-phenyl-4,5-dihydrofuran-2-carboxylate (9C)

9C was obtained as two isomers with the ratio of 3:1 (75% GC ratio for both isomers). The major isomer was
isolated as yellow oil with 42% yield and the minor one was obtained in a mixture with its water adduct. The
isomers could not be identified as E or Z .

3.3.4.1. Major isomer of 9C
1H NMR (500 MHz, CDCl3) : 7.36–7.18 (m, 5H), 6.07 (d, J = 3.4 Hz, 1H), 5.55 (dt, J = 10.3 and 1.7 Hz,
1H), 4.30 (dd, J = 9.9 and 3.0 Hz, 1H), 3.90 (s, 3H), 2.26 (td, J = 6.9 and 2.2 Hz, 2H), 1.50–1.00 (m, 6H),
0.80 (t, J = 7.3 Hz, 3H). 13C NMR (125 MHz, CDCl3) : δ 172.3, 138.2, 131.4, 131.3 (2C), 130.5 (2C), 129.2,
103.7, 87.8, 82.4, 67.7, 51.9, 48.0, 30.3, 29.7, 24.7, 21.2, 16.5. tR (min): 13.09. EI-MS (m/z) : 298 (M+ , 12),
239 (8), 211 (25), 155 (29), 141 (42), 131 (100), 91 (57), 77 (49), 55 (31).

3.3.4.2. Minor isomer of 9C
1H NMR (500 MHz, CDCl3) : 7.36–7.18 (m, 5 H), 5.68 (d,J = 9.0 Hz, 1H), 5.00 (dt, J = 6.9 and 2.2 Hz, 1H),
4.32 (dd, J = 11.2 and 7.3 Hz, 1H), 3.92 (s, 3H), 2.00 (td, J = 6.9 and 1.6 Hz, 2H), 1.50–100 (m, 6H), 0.84 (t,
J = 7.3 Hz, 3H). 13C NMR (125 MHz, CDCl3) : 172.0, 144.1, 138.2, 131.1 (2C), 130.5 (2C), 129.2, 103.7,
87.8, 82.4, 77.8, 52.0, 48.0, 30.5, 29.7, 24.8, 21.4, 16.5. tR (min): 13.22.

3.3.5. Methyl 5-(hept-1-yn-1-yl)-3-hydroxy-4-phenyltetrahydrofuran-2-carboxylate (water adduct
of 9C)

The product was not observed in the crude mixture and was obtained as two isomers after column chromatog-
raphy. It could not be identified as E or Z .

3.3.5.1. Isomer of 9Cw
1H NMR (500 MHz, CDCl3) : 7.36–7.18 (m, 5H), 5.46 (dt, J = 7.7 and 2.2 Hz, 1H), 4.61 (s, 1H), 3.95 (s, 3H),
3.74 (d, J = 6.5 Hz, 1H), 3.72 (d, J = 7.3 Hz, 2H), 2.03 (td, J = 6.9 and 1.6 Hz, 2H), 1.54–1.08 (m, 6H),
0.88–8.83 (m, 3H). 13C NMR (125 MHz, CDCl3) : 167.1, 139.0, 131.3 (2C), 130.5 (2C), 129.3, 93.6, 85.4, 79.4,
75.8, 64.9, 54.3, 44.4, 33.2, 29.7, 24.7, 21.6, 16.5.

3.3.5.2. Isomer of 9Cw
1H NMR (500 MHz, CDCl3) : 7.36–7.18 (m, 5H), 5.23 (dt, J = 8.2 and 2.1 Hz, 1H), 4.61 (s, 1H), 3.75 (s, 1H),
3.74 (d, J = 6.5 Hz, 1H), 3.72 (d, J = 7.3 Hz, 2H), 2.04 (td, J = 6.9 and 1.6 Hz, 2H), 1.08–1.54 (m, 6H),
0.88–0.83 (m, 3H). 13C NMR (125 MHz, CDCl3) : 167.1, 139.2, 131.1 (2C), 130.8 (2C), 129.4, 94.0, 83.9, 79.9,
75.9, 66.2, 54.2, 42.6, 33.0, 29.7, 24.8, 21.7, 16.6.
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3.3.6. Ethyl 2,5-di(hept-1-yn-1-yl)-1,3-dioxolane-4-carboxylate (8D)

Obtained as yellow oil with 24% yield (with 62% GC ratio) as four isomers with the ratio of 2:2:1:1. All isomers
were isolated together in one fraction and the structures were tentatively identified.

tR (min): 13.37, 13.29, 13.59 and 13.26 (ratio 2:2:1:1 respectively). EI-MS (m/z) : 333 (M+ , 1), 261
(15), 210 (47), 153 (100), 123 (22), 91 (39), 81 (40), 55 (40).

3.3.6.1. Minor isomer of 8D
1H NMR (500 MHz, CDCl3) : 5.96 (s, 1H), 5.15 (dt, J = 6.9 and 1.9 Hz, 1H), 4.72 (d, J = 6.9 Hz, 1H), 4.24
(qd, J = 7.3 and 3.0 Hz, 2H), 2.23 (td, J = 6.9 and 1.2 Hz, 2 H), 2.17 (td, J = 6.9 and 1.8 Hz, 2H), 1.50
(pentet, J = 7.3 Hz, 2H), 1.47 (pentet, J = 7.3 Hz, 2H), 1.37–1.25 (m, 8H), 1.30 (t, J = 7.3 Hz, 3H), 0.88 (t,
J = 7.7 Hz, 6H). 13C NMR (125 MHz, CDCl3) : 168.2, 94.2, 90.2, 88.9, 88.7, 79.4, 77.2, 68.5, 61.4, 30.9 (2C),
27.9, 27.7, 22.1 (2C), 18.6 (2C), 14.2, 13.9. tR (min): 13.59.

3.3.6.2. Minor isomer 8D
Isolated as a yellow oil with 8% yield. 1H NMR (500 MHz, CDCl3) : 5.64 (t, J = 1.8 Hz, 1H), 4.93 (dt, J =
7.0 and 1.7 Hz, 1H), 4.56 (d, J = 6.9 Hz, 1H), 4.26 (qd, J = 7.3 and 0.5 Hz, 2H), 2.25 (td, J = 7.3 and 1.7
Hz, 2H), 2.18 (td, J = 7.3 and 1.7 Hz, 2H), 1.56 (pentet, J = 7.3 Hz, 2H), 1.49 (pentet, J = 7.3 Hz, 2H),
1.37–1.25 (m, 8H), 1.32 (t, J = 7.3 Hz, 3H), 0.89 (t, J = 7.7 Hz, 6H) ppm. tR (min): 13.26. HRMS 335.4592
[C20H30O4 + H], calcd. 335.4577.

3.3.7. Ethyl 3-pentylfuran-2-carboxylate (10D)

Obtained as an orange oil with 27% yield (with 33% GC ratio). 1H NMR (500 MHz, CDCl3) : 7.43 (d, J =
1.7 Hz, 1H), 6.38 (d, J = 1.7 Hz, 1H), 4.35 (q, J = 7.3 Hz, 2H), 2.78 (t, J = 7.7 Hz, 2H), 1.58 (pentet, J

= 7.3 Hz, 2H), 1.38 (t, J = 7.3 Hz, 3H), 1.34–1.29 (m, 4H), 0.88 (t, J = 7.3 Hz, 3H). 13C NMR (125 MHz,
CDCl3) : 159.5, 144.8, 139.8, 119.0, 113.8, 60.5, 31.5, 29.5, 25.5, 22.4, 14.4, 14.0. tR (min): 9.09; EI-MS: 210
(M+ , 37), 167 (30), 154 (100), 138 (36), 125 (89), 81 (89), 41(25), 29 (29). HRMS 211.2799 [C12H18O3 +

H], calcd. 211.2775.
CCDC-1472527 contains the supplementary crystallographic data for this work. These data can be ob-

tained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.
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