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Testing the theory of Kuznet 
curve on environmental pollution 
during pre‑ and post‑Covid‑19 era
Oluwaseun Samuel Oduniyi 1*, John M. Riveros 2, Sherif M. Hassan 3 & Ferhat Çıtak 4

Covid‑19 has brought about significant changes in people’s daily lives, leading to a slowdown in 
economic activities and the implementation of restrictions and lockdowns. As a result, there have 
been noticeable effects on the environment. In this study, we examine the impact of Covid‑19 total 
cases on the monthly average of carbon monoxide emissions in developed economies known for heavy 
pollution, covering the period from 2014 to 2023. We apply the Ambiental Kuznets curve approach 
to analyze the data. By employing different panel estimation techniques such as fixed effects and 
Driscoll‑Kraay regressions, we observe a marked shift in environmental dynamics during the post‑
Covid era. This shift alters the statistical significance of the N‑shaped Kuznets curve, rendering the 
relationship between economic activity and environmental impact non‑significant. Interestingly, the 
Covid‑related variables utilized in the various estimations are not statistically significant in explaining 
the long‑term environmental effects.

The environment, people’s livelihoods, and the global economy have all been significantly impacted by Covid-19. 
Recent literature has presented conflicting findings regarding Covid-19’s effects on the environment. According 
to data from the European Environmental Agency, the Covid-19 lockdown and expectations of a slowdown in 
economic activity led to a temporary decline in CO2 emissions in many European cities, including Barcelona, 
Madrid, Milan, Rome, and  Paris1.

Most of the studies have postulated that the Covid-19 pandemic has improved air quality, attributing such 
an effect to the decreased Greenhouse Gas (GHGs) emissions. The reduced economic activity, shutting down of 
energy-intensive factories, suspension of air and train traffic, decline in tourism, and decrease in vehicle traffic 
are all primary causes of the improved air  quality2,3. The empirical results in general confirm the reductions of 
pollutants in the atmosphere during Covid-19, for instance in Quito, the capital of Ecuador, there was a reduction 
in concentrations of  SO2,  NO2, and CO together with the lockdown  enforcement4. In Eastern Europe, during the 
lockdown period, there was a significant reduction in CO and NO due to the decrease in transport  activities5. 
Other studies enlaced the short-term improved air quality with reduced electricity production and  consumption6. 
However, it is generally perceived that the improved air quality due to the pandemic contamination measures is 
short-termed, and is anticipated to be reversed with the gradual increase in human  activity7,8.

Contrarily, other research has shown that during the pandemic the volumes of organic and inorganic waste 
have increased attributing this to (a) reduction in recycling services, (b) heavy transport, and mobilization of 
food production and related delivery services, (c) a sharp increase in demand for single-use plastic packaging, 
bottled hand sanitizer, and other personal protective equipment (PPE) worldwide, (d) increase the demand for 
home delivery services, and (e) increase in medical  waste9,10.

Another stream of the literature investigates the environmental spillovers of Covid-19 considering the Envi-
ronmental Kuznets Curve (EKC)  theory11 argue that economic growth hurts the environment,  while12 on the 
contrary support the claim that economic growth and environmental quality are  complements13 demonstrate 
the existence of a non-linear link between economic expansion and environmental degradation, which can be 
depicted as a bell-shaped curve known as the Environmental Kuznets curve (EKC). Some studies found evidence 
of the validation of the inverted N-shaped EKC hypothesis in the long term considering the relationship between 
oil prices, oil rents, and Co2 in  KSA14. Another study  by15 confirms the likely occurrence of environmental 
degradation during the economic recovery post-Covid-19. During the Covid-19 pandemic, worldwide energy 
consumption and, as a result, environmental emissions were lowered. According to the EKC, any gain in real 
income can increase pollution emissions during the initial stage of economic development, therefore economic 
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recovery from the pandemic might raise pollution emissions even higher than before the epidemic. In this study, 
we investigate the mitigating non-linear effects of Covid-19 on the nexus between the environment, proxied by 
carbon monoxide, and economic activity, proxied by the Economic Activity Index (EIA). Using a sample of the 
top largest economies over the period from 2014 to 2023, we separate our results into pre. and post Covid-19. 
Before the Covid-19 outbreak, the environment-growth nexus is best articulated by a statistically significant 
N-shape Kuznets curve. After the Covid-19 outbreak, these dynamics are mitigated, and the Kuznets curve is 
barely significant under a 90% level of confidence.

Literature review
The majority of the research use a comparative pre-post strategy to examine the environmental impacts of Covid 
19 on air gas pollutants such as carbon monoxide (CO), nitrogen oxides (NO and  NO2), carbon dioxide  (CO2). 
Table 1 summarises the important findings of selected recent research. Part A of the table contains studies at the 
municipal or provincial level, whereas Part B contains research at the country level.

Table 1.  Summary of literature review.

Authors Sample Key findings

A. Studies focusing on the COVID-19 outbreak and air quality (CO2 emissions) at the city level

16 Tian, X., An, C., Chen, Z., & Tian, Z. (2021) Eight Canadian Cities The impact of the Covid-19 pandemic on  CO2 emission concentra-
tion in the atmosphere is significant in each city

17 Gao, C., Li, S., Liu, M., Zhang, F., Achal, V., Tu, Y., Zhang, S., & Cai, 
C. (2021) Chinese megacities Covid-19 epidemic improves air quality

18 Han, L., Zhao, J., & Gu, Z. (2021) Xi’an, China Covid-19 pandemic enhances the quality of air

19 Prats, R.M., van Drooge, B.L., Fernández, P., Marco, E., & Grimat, 
J.O. (2021) Barcelona, Spain A negative relationship is observed between Covid-19 pandemic and 

air pollution
20 Hashim, B.M., Al-Naseri, S.K., Al-Maliki, A., & Al-Ansari, N. (2021) Baghdad, Iraq Covid-19 helps in air quality and natural environment

21 Borhani, F., Motlagh, M.S., Stohl, A., Rashidi, Y., & Ehsani, A.H. 
(2021) Tehran, Iran Covid-19 pandemic helped reduce  CO2 emission

22 Magazzino, C., Mele, M., & Schneider, N. (2020) Three French Cities A direct relationship between Covid-19 pandemic and air pollution 
have been found

23 Mitra, A., Chaudhuri, T.R., Mitra, A., Pramanick, P., & Zaman, S. 
(2020) Kolkata City, India Covid-19 epidemic lowers  CO2 emission

24 Tello-Leal, E., & Macías-Hernández, B.A. (2020) Victorio, Mexico A positive correlation exists between Covid-19 pandemic and  CO2 
emission

25 Bashir, M.F., Bilal, B.M., Komal, B., Bashir, M.A., Tan, D., & Bashir, 
M. (2020) New York City, USA Air quality is significantly linked to changes in the Covid-19 

epidemic
26 Zhang, Z., Xue, T., & Jin, X. (2020) 219 Chinese cities Air pollution is positively associated with Covid-19 cases

27 AQOP. (2021) 355 Municipalities, Netherlands Pollution concentration has a positive influence on confirmed 
Covid-19 cases

28 Rahman, S., Azad, A.K., Roquia Salam, H., Islam, A.R.T., Rahman, 
M., & Hoque, M.M. (2020) Dhaka City, Bangladesh Covid-19 outbreak plays an important role in air pollution

29 Zoran, M.A., Savatru, R.S. Savastru, D.M., & Tautan, M.N. (2020) Milan, Italy Covid-19 epidemic was having a positive role in air pollution reduc-
tion

30 Nakada, L.Y.K. & Urban, R.C. (2020) São Paulo State, Brazil Covid-19 pandemic has a positive impact on air quality

31 Hutter, H-P., Poteser, M., Moshammer, H., Lemmerer, K., Mayer, M., 
Weitensfelder, L., Wallner, P., & Kundi, M. (2020) Vienna, Austria An adverse association between air pollution and Covid-19 was 

deduced

32 Otmani, A., Benchrif, A., Tahri, M., Bounakhla, M., Chakir, E.M., El 
Bouch, M., & Krombi, M. (2020) Salé City, Morocco A significant reduction in emissions was observed during the Covid-

19 pandemic

33 Kerimray, A., Baimatova, N., Ibragimova, O.P., Bukenov, B., 
Kenessov, B., Plotitsyn, P., & Karaca, F. (2020) Almaty, Kazakhstan Covid-19 outbreak and air pollution are strongly correlated with 

each other
34 Mahato, S., Pal, S., & Ghosh, K.G. (2020) Delhi, India Covid-19 pandemic is significantly improved air quality

B. Studies focusing on Covid-19 outbreak and air quality (CO2 emissions) at the country level

2 Filonchyk, M., Huryvonich, V., & Yan, H. (2021) Poland The connection between Covid-19 outbreak and air quality has been 
found positive

35 Gama, C., Relvas, H., Lopes, M., & Monteiro, A. (2021) Portugal Air quality improved during the pandemic

36 Iqbal, S., Bilal, A.R., Nurunnabi, M., Iqbal, W., Alfakhri, Y., & Iqbal. 
N. (2020) Pakistan Covid-19 pandemic lead to a negative impact on  CO2 emissions

37 Mele, M., & Magazzino, C. (2020) India Covid-19 outbreak and  CO2 emission is directly connected

5 Yusup, Y., Ramli, N.K., Kayode, J.S., Yin, C.S., Hisham, S., Isa, H.M., 
& Ahmad, M.I. (2020) China, USA, Europe, and India A negative connection exists between Covid-19 pandemic and 

atmospheric  CO2 concentration

38 Zu, Y., Xie, J., Huang, F., & Cao, L. (2020) China A positive and significant relationship between Covid-19 and  CO2 
emission was found

39 Zambrano-Monserrate, M.A., Ruano, M.A., & Sanchez-Alcalde, L. 
(2020) China, USA, Italy, and Spain Both positive and negative indirect impacts of Covid-19 on air qual-

ity were observed
40 Berman, J.D. & Ebisu, K. (2020) USA The covid-19 pandemic declines air pollution
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This study is one of the few which studied the mitigating environmental effects of Covid-19 considering the 
Environmental Kuznets curve. An example of these studies is the country-level study  by41 that found evidence 
for the validation of the inverted N-shaped EKC hypothesis levels in the long term considering the relationship 
between oil prices, oil rents, and  CO2 in KSA. By applying to a panel of countries using Global VAR, another 
piece of evidence  by42 confirm the likely occurrence of environmental risk post Covid-19 economic recovery. 
According to the EKC, as the globe recovers, pollution emissions will grow even higher than before the outbreak. 
Our study is the first according to our knowledge that uses the latest data up to 2023 to test the EKC hypothesis 
over two temporal samples, Pre and post Covid-19.

Methodology
Using the approach of the Ambiental Kuznets  curve43,44 which specifies the relationship between contamination 
and economic growth, we will opt for a similar, yet slightly modified version where we use the monthly average 
carbon monoxide emissions measured in micrograms per cubic meter of air µg/m3 as the dependant variable 
 following27. To proxy the pandemic effects, we use the monthly sums of the cases of Covid-19 by country using 
the information of the European Centre for Disease Prevention and  Control45 with information augmented up 
to 2023 from the Johns Hopkins Center for Systems Science and  Engineering46. To serve this purpose the model 
is specified as:

where COit is the monthly average carbon monoxide emissions of country i at month t  , the monthly economic 
activity index by country EAIit , and a set of nonlinear terms represented in EAI2

it
 and EAI3

it
 to capture marginal 

effects and N-type shape relationships. We include a vector of covariables represented in X (see for detail the 
variables by country in Appendix A, supplementary Table A1) for the same monthly periodicity, in which we 
selected the unemployment rate, and the inflation (considering the consumer price index by country). For this 
research, we isolate the inclusion of the Covid-19 variable of total cases Cov to inspect the statistical significance 
and sign of the δ1 coefficient across the estimations.

The sample period is from December 2014 to January 2023. We separate our analysis into a pre-covid before 
October 2019, and a post-covid analysis from October 2019 to January 2023. For this purpose, we apply unit-
root tests of first and second generation (Fisher-type Augmented Dickey-Fuller and the Pesaran Cross-Sectional 
Dickey Fuller—CADF- unit-root tests) to establish the integration order of the series. Moreover, we also conduct 
the Cross-Sectional Dependence tests formulated by Pesaran individually for each variable to inspect the exist-
ence of contemporaneous correlation within countries. Finally, to confirm the absence of spurious regressions 
during the estimations we also conduct Kao’s residual-based cointegration tests.

The unit-root analysis with first and second-generation tests (Supplementary Appendix B, Supplementary 
Tables B1, B2, B3, B4, B5, B6) confirms that the order of integration is I(1) for the carbon monoxide emissions, 
economic activity indexes, the total cases of Covid-19, and the controls of unemployment and inflation. These 
results apply to the full sample and pre covid era. We detected one exception to this general pattern in the post 
covid era, wherein the Pesaran CADF unit-root tests with cross-sectional dependence were not feasible to per-
form for some of the variables. As this test requires a larger sample which is not possible with the current data 
structure that is scattered across two groups, pre-and post-Covid.

Since the variables follow I(1) integration level and to avoid possible model misspecification under imbal-
anced panel  data47. We use residual-based and second-generation Westerlund tests and report their outcomes in 
Supplementary Tables B7, B8, B9, B10. The results confirm the cointegrating relationships between the variables 
(all sets of covariates included). This applies to the full sample, pre, and post-sample periods. We perform also 
Pesaran’s Cross-Sectional Dependency tests for each variable (Supplementary Table B11) and the test results 
confirm the existence of cross-sectionally dependence of all variables.

For model selection, we conduct the Breush-Pagan Lagrange Multiplier tests for heterogeneous effects to 
detect the existence of non-constant effects in the residuals. After we confirmed the existence of such heteroge-
nous effects (Supplementary Table C1), we then conducted the Hausman test for model selection (Supplementary 
Table C2), in which we confirmed that a panel fixed effects specification is more convenient and consistent than a 
random effect. Our fixed effects specification can be subject to issues such as serial correlation, heteroskedasticity, 
and cross-sectional dependency. We use Huber/White/Sandwich estimators discussed  in48,49 for autocorrelation 
and heteroskedasticity along with the Driscoll-Kraay estimators that are robust to prior model biases.

We do not employ the Dynamic Ordinary Least Squares (DOLS) or the Fully Modified Ordinary Least 
Squares (FMOLS) due to the strong presence of cross-sectional dependence in the variables (see Supplementary 
Table B11) and missing values.  Following50,51 using prior methodologies will create biased estimates. As shown 
in Table 2, our sample involves the top largest economies (following the World’s bank ranking by GDP  size52).

Data description. Table 3 describes the statistical moments of the  variables53–55 are the main sources of 
information in our study (See Appendix A, Supplementary A1 for details).

The average carbon monoxide emissions are 2.99 µg per cubic meter of air µg/m3, while the Economic Activ-
ity Index on average has a value of 102.76, indicating that for the sample between 2014 and 2020, the trend is 
upward than the unity for the indexes in the countries of analysis, see Table 4. Total cases of Covid-19, on the 
other hand, have been growing exponentially each month, the unemployment rate on average is 6.9% and the 
inflation measured by the consumer price index has been growing up reflecting an average value of 128.04 in 
the inflation index.

The country-level statistics report that U.S. and Japan are the countries with the higher average value in the 
Economic Activity Index, whereas the most pollutants on average in India. The Covid-19 total cases are superior 

(1)COit = β0 + β1EAIit + β2EAI
2

it + β3EAI
3

it + α′
X + δ1Covit + eit
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for the U.S. in comparison to the rest of the countries, and the country with the highest unemployment rate in 
Brazil followed by Italy.

Empirical results
Multiple models have been estimated using the specification of (1). We scattered our results into three periods, 
full sample, pre-covid, and post-covid. These results are reported in Appendix D, Supplementary Table D1, D2, 
D3, D4.

Full sample. The baseline estimates using the full sample are presented in Supplementary Table D1, both 
one-way and two-way fixed effects specifications reveal that Covid 19 cases are statistically significant at a 5% 
level of significance to explain negative changes in the carbon monoxide emissions. However, these baseline 
results do possess problems of serial correlation and heteroskedasticity. When we included the two-way fixed 
effects specification (TWFE), the cross-sectional dependency problem disappears. Nevertheless, we proceed to 
apply the robust standard errors and compare them with the performance of the Driscoll-Kraay estimators to 
validate the results under the influence of serial correlation and heteroskedasticity (and also potentially cross-
sectional dependence).

In our second estimation (Supplementary Table D2) accounting for the serial correlation and heteroskedas-
ticity problems it is noted that the statistical significance of the Covid-19 variable disappears in the full sample. 
Moreover, the economic activity indexes and the controls are not significant. The Driscoll-Kraay estimates on 
the contrary report only a change in the statistical significance of inflation.

Pre and post Covid‑19. As the full sample analysis may not be accurate to reflect discrepancies between 
pre and post-Coid-19. We segment the analysis into pre and post covid 19. The results accounting for serial 
correlation, heteroskedasticity, and cross-sectional dependency are presented in Supplementary Table D3. The 
economic activity index is significant in all linear and nonlinear specifications with a 5% level of significance, 
implying that the N-shape Kuznets curve best describes the dynamics of economic production and carbon mon-
oxide emissions before the outbreak of Covid-19. This result is also consistent with the Driscoll-Kraay estimates.

Table 2.  World Bank’s ranking of Economies by GDP. Note: Due to the lack of information from multiple 
variables of China, it was excluded from this selection. Source: World Bank (2019).

Code Country

US United States

JP Japan

DE Germany

IN India

GB United Kingdom

FR France

IT Italy

BR Brazil

CA Canada

Table 3.  Global statistics of the sample. Source: Own elaboration (2021).

Variable Type Mean Std. Dev Min Max Variable

Carbon Monoxide Emissions

Overall 2.990452 2.294078 0.1 15.5081 N = 465

Between 2.04175 0.2890212 7.379925 n = 9

Within 1.213353 0.5970746 15.13745 T = 51.67

EAI

Overall 102.7637 8.878652 79.07644 136.72 N = 508

Between 8.215709 98.7122 124.1863 n = 9

Within 3.360363 82.2978 115.2974 T = 56.44

Total cases Covid-19

Overall 1.60e + 07 2.11e + 07 1 1.03e + 08 N = 341

Between 1.37e + 07 693,119.1 4.72e + 07 n = 9

Within 1.67e + 07  − 3.12e + 07 7.17e + 07 T bar = 37.8

UE

Overall 6.90813 3.246545 2.2 23.52 N = 508

Between 2.9773 2.815094 10.70833 n = 9

Within 1.712054 0.4997966 22.84457 T = 56.44

CPI

Overall 128.0452 51.2197 94.19368 298.99 N = 508

Between 49.92666 100.8889 257.2794 n = 9

Within 10.76997 102.0297 169.7558 T = 56.444
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Table 4.  Country level statistics. Note: Sample from January 2014 to January 2023. Source: Own elaboration 
(2023).

ID Statistic CO EAI Total Cases of Covid-19 UE CPI

Brazil

Obs 59 60 37 60 60

Mean 3.830674 99.64846 1.90e + 07 10.70833 120.2091

Min 1.852273 91.86034 2 4.3 94.19368

Max 6.79 101.8725 3.70e + 07 14.7 149.7836

SD 1.285116 1.615178 1.21e + 07 2.614451 16.3577

Canada

Obs 59 62 38 62 62

Mean 1.462164 99.71908 693,119.1 6.458065 106.0584

Min 0.8821429 88.26471 3 4.9 98.40528

Max 2.2 101.1247 1,584,116 13.4 121.2251

SD 0.2712541 1.854995 577,655.8 1.315301 6.461008

Germany

Obs 16 26 38 26 26

Mean 3.359299 98.7122 1.21e + 07 3.411538 111.0493

Min 1.6 90.98957 5 3 105.0175

Max 5.653571 100.64 3.79e + 07 3.9 122.2204

SD 1.171069 1.864828 1.42e + 07 0.3755816 5.49475

France

Obs 56 58 38 58 58

Mean 1.213297 99.54232 1.37e + 07 9.012069 103.4866

Min 0.1 79.07644 5 7.1 98.86

Max 2.878947 101.7627 3.85e + 07 10.5 113.38

SD 0.978935 3.087311 1.11e + 07 1.052329 3.71848

India

Obs 50 59 38 59 59

Mean 7.379925 99.72229 2.55e + 07 7.583559 122.197

Min 4.986547 83.55847 1 3.37 102.1358

Max 11.91111 102.0299 4.47e + 07 23.52 145.9832

SD 1.657325 3.150527 1.74e + 07 3.228306 13.95595

Italy

Obs 56 67 38 67 67

Mean 0.2890212 99.54188 8,872,558 10.39403 103.0504

Min 0.1 86.42143 2 7.9 99.34884

Max 0.8228682 101.1739 2.55e + 07 12.6 113.9

SD 0.2405976 2.483372 9,239,691 1.307076 3.466068

Japan

Obs 52 53 38 53 53

Mean 3.549107 100.0734 6,548,140 2.815094 100.8889

Min 1.969231 92.51748 15 2.2 99.36371

Max 5.770513 101.1303 3.30e + 07 3.6 103.3342

SD 0.7124973 1.291356 1.01e + 07 0.3938939 1.006946

United Kingdom

Obs 57 58 38 58 58

Mean 3.248914 99.54424 1.06e + 07 4.42931 106.6379

Min 1.017904 82.51848 2 3.5 99.2

Max 6.494194 100.9154 2.43e + 07 5.7 122.3

SD 1.360595 2.914089 9,799,068 0.6431852 6.395937

United States

Obs 60 65 38 65 65

Mean 3.361105 124.1863 4.72e + 07 4.693846 257.2794

Min 2.226053 112.17 8 3.5 234.747

Max 15.5081 136.72 3.72e + 07 13.2 298.99

SD 2.027132 7.046192 3.24e + 07 1.589701 19.54877

Total

Obs 465 508 341 508 508

Mean 2.990452 102.7637 1.60e + 07 6.90813 128.0452

Min 0.1 79.07644 1 2.2 94.19368

Max 15.5081 136.72 1.03e + 08 23.52 298.99

SD 2.294078 8.878652 2.11e + 07 3.246545 51.2197



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:12851  | https://doi.org/10.1038/s41598-023-38962-5

www.nature.com/scientificreports/

We move forward to inspecting the covid era (Supplementary Table D4: October 2019 to January 2023). There 
is some evidence of the Kuznets N-shape curve in the Driscoll-Kraay estimates at a 10% level of significance 
in this period, but the general pattern is that there is a reduction in the statistical significance and magnitude 
of all the variables. In fact, in the clustered TWFE estimates, none of the variables is significant. We interpret 
these results as a rupture in the traditional dynamics of economic production and contamination since the 
statistical significance is affected severely, remarkably even when there is evidence of the N-shape type of the 
Kuznets relationships, the statistical significance is not as strong as it was in the pre-covid sample (Supplemen-
tary Table D3). Furthermore, the covid variable of total cases is not significant under a 95% level of confidence 
across the estimates.

To check the robustness of our results, we repeat our estimations after replacing the total cases of Covid 19 
variable with another proxy of the covid effects measured as the ratio of monthly total deaths by covid over total 
infections. We also replace the dependent variable, carbon monoxide emissions, with the first principal com-
ponents score of multiple pollutants (Carbon monoxide emissions, particulate matter in 2.5 microns –PM2.5–, 
particulate matter in 10 microns –PM10–, sulfur dioxide –SO2– and nitrogen dioxide –NO2–). The new results 
resemble the primary findings (Supplementary Tables E1 and E2). The N-shape Kuznets curve in the period 
before the covid era is statistically significant under a 95% level of confidence. This significance disappears, barely 
significant under a 10% level of confidence in the post-covid (after October 2019). The shape of the Ambiental 
Kuznets curve changes across the models denoting the eras of pre and post Covid-19 as shown in Fig. 1.

Conclusion
The study examines the short-run and long-run effects of pre-and post-Covid 19 eras, using the approach of the 
Ambiental Kuznets curve. The study uses both Driscoll-Kraay and Two-Way Fixed Effects estimators. The result 
shows that the economic activity index is significant in all linear and nonlinear specifications with a 95% level 
of significance, implying that the N-shape Kuznets curve best describes the dynamics of economic production 
and carbon monoxide emissions pre- Covid 19 era. However, in the post-Covid 19 era, our results show that the 
relationship between economic production and carbon monoxide emissions (air contamination) is no longer 
significant and does not follow the EKC theory. The study recommends that government and various stakehold-
ers should pursue policies targeting the impact of environmental pollution (carbon monoxide) on economic 
activity outside the emergence of covid 19.

Data availability
Requests for data should be addressed to Oduniyi.
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