Spectral analysis and biological activity assessment of silver doped hydroxyapatite
Access
info:eu-repo/semantics/closedAccessDate
2021Author
Erdem, ÜmitMoran Bozer, Büşra
Türköz, Mustafa B.
Metin, Ayşegül Ülkü
Yıldırım, Gürcan
Türk, Mustafa
Nezir, Saffet
Metadata
Show full item recordCitation
Erdem, U., Bozer, B. M., Turkoz, M. B., Metin, A. U., Yıldırım, G., Turk, M., & Nezir, S. (2021). Spectral analysis and biological activity assessment of silver doped hydroxyapatite. Journal of Asian Ceramic Societies, 1-22.Abstract
In this study, the hydroxyapatite biomaterials are produced by the precipitation method and the role of silver doping within the different molar ratios of 2.0, 5.0, and 10.0% are investigated with some fundamental analysis, including powder XRD, SEM, EDS, FTIR, Raman, and material densities. In vitro biocompatibility assessment is conducted with cytotoxicity and agar diffusion tests. Moreover, genotoxicity tests determine whether the biomaterials produced cause the mutations or not. In addition, a hemolytic effect test examines the variation of hemolytic behavior of compounds. Also, the cell migration experiments inspect the influence of silver ion levels in biomaterials on many biological processes. The experimental results reveal that the honeycomb-patterned morphological structures are obtained for all the products. FTIR and Raman analyses reveal that the dramatic changes in the characteristic functional group peaks are obtained with the increment in the amount of silver ions. The experimental parts related to the biocompatibility assessment of the study show that there seems to be deterioration in biocompatibility as the silver ion-doping level increases in the system. To sum up, the ideal doping value for bone tissue engineering applications is found to be 2%. © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of The Korean Ceramic Society and The Ceramic Society of Japan.