Yazar "Enginsoy, Halil Murat" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Effect of impactor shapes on the low velocity impact damage of sandwich composite plate: Experimental study and modelling(Elsevier Ltd, 2016) Kurşun, Ali; Şenel, Mehmet; Enginsoy, Halil Murat; Bayraktar, EminAn experimental and numerical analysis of the influence of impactor shapes on the low velocity impact performance of aluminium sandwich composite plates has been carried out. The aluminium composite panels were manufactured by using two aluminium sheets and a low density polyethylene core under heat and pressure, which shows the outstanding properties of low weight, good rigidity and impact resistance. Experimental tests were performed using drop weight test machine, samples were impacted using steel conical, ogival, hemispherical and flat impactors, all 12 mm in diameter, for different initial impact energies of 29.43 J and 44.15 J and specimen thickness of 4 mm containing three different parts (0.5 + 3.0 + 0.5). A three dimensional non-linear finite element model is developed for simulating the impact behaviour of sandwich composite plate and the ABAQUS/Explicit commercial program was used. The face sheet material aluminium alloy 3003-O of the plate was modelled as isotropic with elastic-plastic characteristics. The description of the material characteristic of the attenuator was made by means of the Johnson-Cook elastic-plastic law. The material constitutive law of the Al 3003 plates has been implemented in a user-defined subroutine UMAT. The foam core was modelled as a crushable foam material. The finite element results showed a good correlation to the experimental data in terms of contact-force histories, energy histories, absorbed energy, and failure of the sandwich composite was observed between the experimental data. © 2015 Elsevier Ltd.Öğe Experimental and numerical analysis of low velocity impact on a preloaded composite plate(Elsevier Ltd, 2015) Kurşun, Ali; Şenel, Mehmet; Enginsoy, Halil MuratAn experimental and numerical study on the influence of biaxial preloading on the low velocity impact performance of E-glass/epoxy-laminated composite plates was conducted. For this aim, an experimental device was developed to apply the load in two perpendicular directions. Three preload cases, representative of actual structures were selected, biaxially tension, compression and, tension-compression (shear) loading cases. The samples were produced from unidirectional reinforced E-glass and epoxy, by using a hand lay-up technique. Laminated E-glass/epoxy with stacking sequence [0/90]2s, dimensions were 140 × 140 mm2 and a thickness of 2 mm for the samples used. Finite element analysis (FEA) was developed, using Hashin failure criteria for the composite material, and material models implemented by a User Material Subroutine into ABAQUS®/explicit software, in order to simulate the failure mechanisms and force-time histories. Force-time and energy-time data were obtained by means of user material subroutine from the finite element model. The finite element results showed a good correlation to the experimental data in terms of force-time, energy-time graph or failure in composite plate, although these numerical results strongly depended on simulation parameters like mesh size or the number of element. © 2015 Elsevier Ltd. All rights reserved.Öğe Experimental and numerical study of alumina reinforced aluminum matrix composites: Processing, microstructural aspects and properties(Elsevier Ltd, 2016) Kurşun, Ali; Bayraktar, Emin; Enginsoy, Halil MuratCo-continuous alumina-aluminum composite materials with excellent physical and mechanical properties offer great potentials for lightweight, wear resistant, and high-temperature applications. They combine metallic properties of matrix alloys (ductility and toughness) with ceramic properties of reinforcements (high strength and high modulus), leading to greater strength in shear and compression and higher service-temperature capabilities. Composite materials prepared from a liquid-phase displacement reaction present a unique microstructure in which each phase is a continuous network penetrated by the network of the other constituent. In this study, aluminum-alumina matrix composites reinforced with glass bubbles with low thermal and electrical conductivities are presented. Different characterization techniques were used to determine physical-mechanical properties. Porosity and density measurements were carried out by means of helium gas pycnometer and basic materials parameters were compared such as effect of the sintering process, thermal conductivity, and percentage of the wax. Drop weigh tests, semi static compression tests and also scratch tests were applied to measure the general mechanical and damage behavior of these composites. Microstructural and fracture behavior were evaluated by Scanning Electron Microscopy (SEM). A three dimensional non-linear finite element model was developed for modeling the impact and compression behavior of alumina reinforced aluminum matrix composite materials. For this stage, ABAQUS/Explicit commercial program was used. The finite element results have shown a good correlation with the experimental data in terms of contact-force and energy histories and also deflection phenomena of the alumina reinforced aluminum matrix composites during the impact was observed between the experimental data. © 2016 Elsevier Ltd. All rights reserved.Öğe Fatigue behavior of adhesively bonded glass fiber reinforced plastic composites with different overlap lengths(SAGE Publications Ltd, 2015) Kara, Emre; Kurşun, Ali; Haboğlu, Mustafa Reşit; Enginsoy, Halil Murat; Aykul, HalilThe joining techniques of lightweight and strong materials in the transport industry (e.g. automotive, aerospace, shipbuilding industries) are very important for the safety of the entire structure. In these industries, when compared with other joining methods, the use of adhesively bonded joints presents unique properties such as greater strength, design flexibility, and reduction in fuel consumption, all thanks to low weight. The aim of this study was the analysis of the tensile fatigue behavior of adhesively bonded glass fiber/epoxy laminated composite single-lap joints with three different specimen types including 30, 40 and 50mm overlap lengths. In this study, composite adherents were manufactured via vacuum-assisted resin transfer molding and were bonded using Loctite 9461A&B toughened epoxy adhesive. The effect of a surface treatment method on the bonding strength was considered and it led to an increment of about 40%. A numerical analysis based on a finite element model was performed to predict fatigue life curve, and the predicted results showed good agreement with the experimental investigation. © IMechE 2015.