Yazar "Göz, Eda" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Prediction of bromate removal in drinking water using artificial neural networks(Taylor and Francis Inc., 2018) Karadurmuş, Erdal; Taşkın, Nur; Göz, Eda; Yüceer, MehmetIn treatment of natural water resources, bromide transforms into carcinogenic bromate, especially during the ozonation process. Adsorption was used in the experimental part of this study to remove this harmful compound from drinking water. For this purpose, technically, HCl-, NaOH-, and NH3-modified activated carbons were used. Scanning Electron Microscopy (SEM) and Brunauer–Emmett–Teller (BET) analyses were carried out within the characterization study. Moreover, the effects of diameters and heights of adsorption columns, flowrate, and particle size of adsorbent were investigated on the removal amounts of bromate. Optimum conditions were obtained from the experiments, and regional/real samples were collected and analyzed. After the experiments, an artificial neural network (ANN) was used to predict bromate removal percentage by using the observed data. Within this context, a feed-forward back-propagation ANN was chosen in this study. Additionally, the transfer function was selected as tangent sigmoid and 3 neurons were used in the hidden layer. Particle size and amount of the activated carbon, height and diameter of the column, volumetric flowrate, and initial concentration were selected as the input variables. Bromate removal percentage was selected as the output. It was found that the model an R value of 0.988, RMSE value of 3.47 and mean absolute percentage error (MAPE) of 5.19% in the test phase. © 2018, © 2018 International Ozone Association.Öğe Prediction of characteristic properties of crude oil blending with ANN(Taylor and Francis Inc., 2018) Karadurmuş, Erdal; Akyazı, Habib; Göz, Eda; Yüceer, MehmetMineral oil is one of the most important materials on earth and it is used widely for its several features. Mineral oils derived from petroleum products are commonly used to decrease the friction effects in machine parts and, thus, they both prevent wear/overheating and facilitate power transmission. In this study, various binary mixtures of various base oils (SN-80, SN-100, SN-150, SN-50, SN-500) were prepared at different volumetric ratios. Kinematic viscosity (at 40°C and 100°C), viscosity index, flash point, pour point, and density (at 20°C) measurements were performed for characterization of the prepared mixtures. These values were modeled by an artificial neural network (ANN) and the model was tested with root mean squared error (RMSE), mean absolute percentage error (MAPE, %), and regression coefficient (R) values. A higher value of correlation coefficient and smaller values of MAPE and RMSE indicate that the model performs better. For predicting kinematic viscosity at 40°C, correlation coefficients were calculated for training and testing the network as 0.9999 and 0.9995, respectively. Respective MAPE values were determined as 1.011% and 1.8771%. © 2017, © 2017 Taylor & Francis.