Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Umut, Evrim" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Nickel ferrite nanoparticles for simultaneous use in magnetic resonance imaging and magnetic fluid hyperthermia
    (Academic Press Inc Elsevier Science, 2019) Umut, Evrim; Coşkun, Mustafa; Pineider, Francesco; Berti, Debora; Güngüneş, Hakan
    We demonstrate magnetic resonance imaging (MRI) contrast enhancement and ac-field induced heating abilities of tetramethylammoniumhydroxide (TMAH) coated nickel ferrite (NiFe2O4) nanoparticles and discuss the underlying physical mechanisms. The structural characterization revealed that the NiFe2O4 particles synthesized with a modified co-precipitation method have a very narrow size distribution with a 4.4 nm magnetic core and 15 nm hydrodynamic diameters, with relatively small fraction of agglomerates. The as-prepared particles presented superparamagnetic behavior at room temperature. The in vitro hyperthermia experiments, performed in ac-field conditions under human tolerable limits, showed that the suspensions of the synthesized nanoparticles exhibit a maximum specific absorption rate (SAR) value of 11 W/g. The H-1 nuclear magnetic resonance (NMR) relaxometry measurements indicated the suspensions of NiFe2O4 have a transverse-to-longitudinal relaxivity ratio r(2)/r(1) greater than two, as required for superparamagnetic MRI contrast agents. On the basis of the parameters obtained from the magnetic measurements, by comparing the relevant theoretical models with the experimental results, we found that the presence of agglomerates, and particularly the interactions within the agglomerated nanoparticles, caused a significant increase in the hyperthermia and MRI efficiencies. On the other hand, from an applicative point of view, both the MRI contrast enhancement and the heating capabilities allow the simultaneous use of nickelferrites in diagnostic and therapeutic applications as theranostic agents. (C) 2019 Elsevier Inc. All rights reserved.
  • [ X ]
    Öğe
    Spin Canting in Silica-Coated Nickel Ferrite (NiFe2O4@SiO2) Nanoparticles: a Mossbauer Spectroscopy Study
    (Springer, 2021) Umut, Evrim; Coşkun, Mustafa; Güngüneş, Hakan; Dupuis, Vincent; Kamzin, Alexander S.
    We present a comparative study on superparamagnetic uncoated and silica-coated NiFe2O4@SiO2 nanoparticles with identical NiFe2O4 cores and two different silica coating thicknesses, focusing on the surface spin arrangement on NiFe2O4. For the investigation of surface spin dynamics, in addition to the SQUID magnetometry experiments which probe the macroscopic behaviour of particle magnetization, Mossbauer spectroscopy was utilized as being a local technique with superior characteristic measurement time. It was revealed that two common aspects observed in nanoscaled magnetic particles, namely the surface spin canting and interparticle dipolar interactions, are intertwined with respect to their contributions to the total magnetic anisotropy, where the latter is significantly decreased with silica coating thickness and allowed surface effects to manifest itself in Mossbauer spectra. The reduced saturation magnetization of uncoated NiFe2O4 nanoparticles with respect to their bulk counterparts indicated the existence of a magnetically dead layer on NiFe2O4 surface. In opposite to some assumptions in the literature, the Mossbauer spectra confirmed that such reduced magnetization arises from spin disorder, rather than a change in coordination from inverse spinel to the mixed spinel structure. On the other side, emergence of broad sextet peaks at room temperature Mossbauer spectra showed that for NiFe2O4@SiO2 samples, silica coating further enhanced the spin canting on NiFe2O4 surface. Similarly, for NiFe2O4@SiO2 sample, an unusual asymmetric hysteresis loop at spin freezing temperature was observed as a signature of the existence of disordered spins in the SiO2/NiFe2O4 interface. It was shown that the sextet components in Mossbauer spectra can be reproduced with a continuous hyperfine field distribution due to the frustrated local spin arrangement at the surface. The thickness of the magnetically dead disordered surface spin layer was estimated for uncoated NiFe2O4, and average spin canting angle was calculated for NiFe2O4@SiO2 nanoparticles.

| Hitit Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Kütüphane ve Dokümantasyon Daire Başkanlığı, Çorum, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim