Predicting energy absorption parameters of aluminum lattice structures filled tubes via artificial neural networks
dc.authorid | 0000-0001-5551-6934 | |
dc.authorid | 0000-0001-7583-7655 | |
dc.contributor.author | Çetin, Erhan | |
dc.contributor.author | Baykasoğlu, Cengiz | |
dc.contributor.author | Baykasoğlu, Adil | |
dc.date.accessioned | 2019-12-09T07:30:46Z | |
dc.date.available | 2019-12-09T07:30:46Z | |
dc.date.issued | 2019 | en_US |
dc.department | Hitit Üniversitesi, Mühendislik Fakültesi, Makine Mühendisliği Bölümü | |
dc.description.abstract | In this paper, the energy absorption parameters of aluminum body centered cubic lattice structures filled thin-walled tubes under axial loading are predicted via artificial neural networks (ANNs). Different tube thickness, lattice member diameters and number of lattice unit cells are considered as design variables, the total amount of energy absorption (EA), the specific energy absorption (SEA), the mean crush force (MCF) and the peak crush force (PCF) are considered as design criteria (energy absorption parameters). The proposed approach is based on finite element simulations for construction of the sample design space and verification, ANNs for predicting the energy absorption parameters. The results showed that the proposed ANN approach is able to predict the energy absorption parameters with high accuracy. | |
dc.description.provenance | Submitted by Cengiz Baykasoğlu (cengizbaykasoglu@hitit.edu.tr) on 2019-12-07T16:19:06Z No. of bitstreams: 2 license_rdf: 700 bytes, checksum: 79da7ba44461b593b4f6afc1f09853c4 (MD5) iatens_bildiri.pdf: 673504 bytes, checksum: 137e78b22ed9c1c95c1216e56ad9d65f (MD5) | en |
dc.description.provenance | Approved for entry into archive by Zeynep Umut Arslan (umutarslan@hitit.edu.tr) on 2019-12-09T07:30:46Z (GMT) No. of bitstreams: 2 license_rdf: 700 bytes, checksum: 79da7ba44461b593b4f6afc1f09853c4 (MD5) iatens_bildiri.pdf: 673504 bytes, checksum: 137e78b22ed9c1c95c1216e56ad9d65f (MD5) | en |
dc.description.provenance | Made available in DSpace on 2019-12-09T07:30:46Z (GMT). No. of bitstreams: 2 license_rdf: 700 bytes, checksum: 79da7ba44461b593b4f6afc1f09853c4 (MD5) iatens_bildiri.pdf: 673504 bytes, checksum: 137e78b22ed9c1c95c1216e56ad9d65f (MD5) Previous issue date: 2019 | en |
dc.description.sponsorship | Scientific Research Projects Governing Unit of Hitit University, project No: MUH19004.18.001 | en_US |
dc.identifier.citation | Çetin, E., Baykasoğlu, C., Baykasoğlu, A. (2019). Predicting energy absorption parameters of aluminum lattice structures filled tubes via artificial neural networks. The International Aluminium-Themed Engineering and Natural Sciences Conference, October 4-6 2019, Seydişehir, Turkey. | |
dc.identifier.endpage | 536 | en_US |
dc.identifier.startpage | 532 | en_US |
dc.identifier.uri | https://hdl.handle.net/11491/5464 | |
dc.language.iso | en | |
dc.relation.ispartof | The International Aluminium-Themed Engineering and Natural Sciences Conference | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Artificial Neural Networks | en_US |
dc.subject | Energy Absorption | en_US |
dc.subject | Lattice Structures | en_US |
dc.subject | Energy Absorption | en_US |
dc.subject | Finite Element Method | en_US |
dc.title | Predicting energy absorption parameters of aluminum lattice structures filled tubes via artificial neural networks | |
dc.type | Conference Object |