Yazar "Darvishov, N. H." seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Optical characteristics of Bi12SiO20 single crystals by spectroscopic ellipsometry(Elsevier, 2020) Işık, Mehmet; Delice, Serdar; Nasser, H.; Gasanly, Nizami Mamed; Darvishov, N. H.; Bagiev, V. E.Structural and optical characteristics of Bi12SiO20 single crystal grown by the Czochralski method were investigated by virtue of X-ray diffraction (XRD) and spectroscopic ellipsometry measurements. XRD analysis indicated that the studied crystal possesses cubic structure with lattice parameters of a = 1.0107 nm. Spectral dependencies of several optical parameters like complex dielectric constant, refractive index, extinction and absorption coefficients were determined using ellipsometry experiments performed in the energy region of 1.2-6.2 eV. The energy band gap of Bi12SiO20 crystals was found to be 3.25 eV by utilizing absorption coefficient analysis. Moreover, critical point energies were calculated as 3.54, 4.02, 4.82 and 5.58 eV from analyses of the second energy derivative spectra of the complex dielectric constant.Öğe Structural and temperature-tuned optical characteristics of Bi12GeO20 sillenite crystals(Elsevier, 2020) Delice, S.; Isik, M.; Gasanly, N. M.; Darvishov, N. H.; Bagiev, V. E.Sillenite compounds exhibit unique photorefractive and electro-optic characteristics providing attractiveness to these materials in various optoelectronic applications. The present paper aims at investigating one of the members of this family. Structural and optical characteristics of Bi12GeO20 (BGO) were studied by means of x-ray diffraction, Raman spectroscopy and temperature-dependent transmittance measurements. Obtained transmission curves in the wavelength range of 350-1100 nm and at different applied temperatures between 10 and 300 K were employed to find out the absorption coefficient dependence on the photon energy. Tauc relation revealed the presence of an energy gap of 2.49 eV at room temperature. Extension of energy gap up to 2.57 eV due to decreased temperature down to 10 K was deduced by the analysis. In order to have reliable results, the energy gap value was corroborated by utilizing derivative spectral method and well consistency between both methods was indicated. Energy gap change with temperature was also discussed in the study using an empirical formula developed by Varshni. Energy gap at absolute zero and rate of band gap alteration with temperature were determined as 2.57 eV and -2.4 x 10(-4) eV K (- 1), respectively. Taking into account the previously reported studies on investigation of band gap characteristics of BGO, intrinsic Bi-Ge(3+) + V-O(+) defect could be responsible for the revealed energy value of 2.49 eV which is much lower than reported band gap energy of similar to 3.2 eV.Öğe Temperature-tuned bandgap characteristics of Bi12TiO20 sillenite single crystals(Springer, 2021) Isik, M.; Delice, S.; Gasanly, N. M.; Darvishov, N. H.; Bagiev, V. E.Bi12MO20 (M: Si, Ge, Ti, etc.) compounds are known as sillenites having fascinating photorefractive characteristics. The present paper reports the structural and optical characteristics of one of the members of this family, Bi12TiO20 single crystals, grown by Czochralski method. X-ray diffraction pattern of the crystal presented sharp and intensive peaks associated with planes of cubic crystalline structure with lattice constant of a = 1.0142 nm. The optical properties were studied by means of room temperature Raman and temperature-dependent transmission experiments at various temperatures between 10 and 300 K. Raman spectrum indicated peaks around 127, 162, 191, 219, 261, 289, 321, 497 and 537 cm(-1). The analyses of transmittance spectra indicated the increase of direct bandgap energy from 2.30 to 2.56 eV as temperature was decreased from room temperature to 10 K. The temperature-dependent bandgap characteristics of Bi12TiO20 were analyzed by means of Varshni and O'Donnell-Chen models. The analyses under the light of these models resulted in absolute zero bandgap energy of E-g(0) = 2.56(4) eV, rate of change of bandgap energy of gamma = - 1.11 x 10(-3) eV/K and average phonon energy of < E-ph & rang; = 8.6 meV.