Estimation of soil moisture using decision tree regression

dc.authoridPEKEL, Engin / 0000-0002-5295-8013
dc.contributor.authorPekel, Engin
dc.date.accessioned2021-11-01T15:03:09Z
dc.date.available2021-11-01T15:03:09Z
dc.date.issued2020
dc.department[Belirlenecek]
dc.description.abstractSoil moisture (SM) is a significant factor in the climate system. The accurate determination of SM has high importance in food production to satisfy the increasing demand for food and the chemical processes of soil. This paper applies decision tree regression to estimate SM considering different parameters including air temperature, time, relative humidity, and soil temperature. The presented method holds a mighty advantage to determine SM since the stimulant of the decision tree regression is an algorithm that generates a decision tree from given instances. Besides, usage of decision tree regression provides an opportunity to save time. Numerical results show that the presented method offers a high coefficient of determination value (R-2), low mean squared error (MSE), and mean absolute error (MAE). The depth of the decision tree equals to five by providing higher fitness values than other depth levels. The best fitness values in the training stage are 0.00019, 0.007, and 0.842 for MSE, MAE, and R-2, respectively. In conclusion of the paper, applied decision tree regression can handle the data of SM estimation in satisfying fitness criterion.
dc.identifier.doi10.1007/s00704-019-03048-8
dc.identifier.endpage1119en_US
dc.identifier.issn0177-798X
dc.identifier.issn1434-4483
dc.identifier.issue3-4en_US
dc.identifier.scopus2-s2.0-85076208991
dc.identifier.scopusqualityQ2
dc.identifier.startpage1111en_US
dc.identifier.urihttps://doi.org/10.1007/s00704-019-03048-8
dc.identifier.urihttps://hdl.handle.net/11491/6992
dc.identifier.volume139en_US
dc.identifier.wosWOS:000511528400022
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthor[Belirlenecek]
dc.language.isoen
dc.publisherSpringer Wien
dc.relation.ispartofTheoretical And Applied Climatology
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectDecision tree regressionen_US
dc.subjectEstimationen_US
dc.subjectLearningen_US
dc.subjectSoil moistureen_US
dc.titleEstimation of soil moisture using decision tree regression
dc.typeArticle

Dosyalar