Analysis of current conduction mechanism in CZTSSe/n-Si structure

dc.authorid0000-0003-2212-199X
dc.contributor.authorTerlemezoğlu, Makbule
dc.contributor.authorBayraklı Sürücü, Özge
dc.contributor.authorGüllü, Hasan Hüseyin
dc.contributor.authorÇolako?lu, Tahir
dc.contributor.authorYıldız, Dilber Esra
dc.contributor.authorParlak, Mehmet
dc.date.accessioned2019-05-13T08:58:25Z
dc.date.available2019-05-13T08:58:25Z
dc.date.issued2018
dc.departmentHitit Üniversitesi, Fen Edebiyat Fakültesi, Fizik Bölümü
dc.description.abstractIn this study, Cu2ZnSn(S,Se)4 (CZTSSe) thin films were deposited by the single step thermal evaporation process using the sintered powder of CZTSSe on soda lime glass (SLG) and Si wafer substrates. The structural, optical, and electrical properties of deposited films were investigated. Current–voltage (I–V) in the temperature range of 250–350 K, capacitance–voltage(C–V) and conductance–voltage (G/w–V) measurements at room temperature were carried out to determine electrical properties of CZTSSe/n-Si structure. The forward bias I–V analysis based on thermionic emission (TE) showed barrier height inhomogeneity at the interface and thus, the conduction mechanism was modeled under the assumption of Gaussian distribution of barrier height. The mean barrier height (?¯B0) and standard deviation (?0) at zero bias were obtained as 1.27 eV and 0.18 V, respectively. Moreover, Richardson constant was obtained as 120.46 A cm?2 K?2 via modified Richardson plot and the density of interface states (Dit) profile was determined using the data obtained from forward bias I–V measurements. In addition, by the results of frequency dependent C–V measurements, characteristics of the interface state density were calculated applying high-low frequency capacitance (CHF ? CLF) and Hill–Coleman methods.
dc.identifier.citationTerlemezoğlu, M., Bayraklı, Ö., Güllü, H. H., Çolakoğlu, T., Yıldız, D. E., Parlak, M. (2018). Analysis of current conduction mechanism in CZTSSe/n-Si structure. Journal of Materials Science: Materials in Electronics, 29(7), 5264-5274.
dc.identifier.doi10.1007/s10854-017-8490-1
dc.identifier.endpage5274en_US
dc.identifier.issn0957-4522
dc.identifier.issue7en_US
dc.identifier.scopusqualityQ2
dc.identifier.startpage5264en_US
dc.identifier.urihttps://doi.org/10.1007/s10854-017-8490-1
dc.identifier.urihttps://hdl.handle.net/11491/1132
dc.identifier.volume29en_US
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer New York LLC
dc.relation.ispartofJournal of Materials Science: Materials in Electronics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subject[Belirlenecek]en_US
dc.titleAnalysis of current conduction mechanism in CZTSSe/n-Si structure
dc.typeArticle

Dosyalar