Electrical properties and hyperfine interactions of boron doped Fe3O4 nanoparticles

dc.contributor.authorAmir, Md.
dc.contributor.authorÜnal, Bayram
dc.contributor.authorGeleri, M.
dc.contributor.authorGüngüneş, Hakan
dc.contributor.authorShirsath, Sagar E.
dc.contributor.authorBaykal, Abdulhadi
dc.date.accessioned2019-05-13T08:57:48Z
dc.date.available2019-05-13T08:57:48Z
dc.date.issued2015
dc.departmentHitit Üniversitesi, Fen Edebiyat Fakültesi, Fizik Bölümü
dc.description.abstractThe single spinel phase nano-structured particles of FeBxFe2-xO4 (x = 0.1, 0.2, 0.3, 0.4 and 0.5) were synthesized by the glycothermal method and the effect of B3+ substitution on structural and dielectric properties of Fe3O4 were studied. From 57Fe Mössbauer spectroscopy data, the variation in line width, isomer shift, quadrupole splitting and hyperfine magnetic field values on B3+ substitution have been determined. The hyperfine field values at B- and A-sites gradually decrease with increasing B3+ ion concentration (x). The cation distributions obtained from Bertaut method are in line with Mössbauer results. Complex impedance analysis of boron-substituted spinel ferrites have been made extensively in order to investigate the significant changes in ac and dc conductivity as well as complex permittivity when the boron composition ratio varies from 0.1 to 0.5. It is found that both ac and dc conductivity are also dependent on the boron content in addition to both temperature and applied frequency. The dc conductivity tendency does not purely obey the Arrhenius plots. The dielectric constant and loss of complex permittivity, in general, show similar attitudes as seen in some nanocomposites containing spinel ferrites except for some fluctuations and shifts along the characteristics of the curves. Furthermore, their imaginary components of both permittivity and modulus are almost found to obey the power law with any exponent values varying between 0.5 and 2 in accordance with the level of boron concentrations. © 2015 Elsevier Ltd. All rights reserved.
dc.identifier.citationAmir, M., Ünal, B., Geleri, M., Güngüneş, H., Shirsath, S. E., Baykal, A. (2015). Electrical properties and hyperfine interactions of boron doped Fe3O4 nanoparticles. Superlattices and Microstructures, 88, 450-466.
dc.identifier.doi10.1016/j.spmi.2015.10.005
dc.identifier.endpage466en_US
dc.identifier.issn0749-6036
dc.identifier.scopusqualityN/A
dc.identifier.startpage450en_US
dc.identifier.urihttps://doi.org/10.1016/j.spmi.2015.10.005
dc.identifier.urihttps://hdl.handle.net/11491/1013
dc.identifier.volume88en_US
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherAcademic Press
dc.relation.ispartofSuperlattices and Microstructures
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectCation Distributionen_US
dc.subjectConductivityen_US
dc.subjectDielectric Propertiesen_US
dc.subjectMagnetic Nanomaterialsen_US
dc.subjectMössbauer Analysisen_US
dc.titleElectrical properties and hyperfine interactions of boron doped Fe3O4 nanoparticles
dc.typeArticle

Dosyalar