Structural, morphological, optical, cation distribution and Mössbauer analysis of Bi3+ substituted strontium hexaferrite

[ X ]

Tarih

2016

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Single-phase M-type hexagonal ferrites, SrBixFe12?xO19 (0.0?x?1.0), were prepared by a co-precipitation assisted ceramic route. The influence of the Bi3+ substitution on the crystallization of ferrite phase has been examined using powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and Mössbauer spectroscopy. The XRD data show that the nanoparticles crystallize in the single hexagonal magnetoplumbite phase with the crystallite size varying between 65 and 82 nm. A systematic change in the lattice constants, a=b and c, was observed because of the ionic radius of Bi3+ (1.17 Å) being larger than that of Fe3+ ion (0.64 Å). SEM analysis indicated the hexagonal shape morphology of products. From 57Fe Mössbauer spectroscopy data, the variation in line width, isomer shift, quadrupole splitting and hyperfine magnetic field values on Bi substitutions have been determined.

Açıklama

Anahtar Kelimeler

C. Optical Properties, Cation Distribution, Hexaferrites, Morphology, Mössbauer Analysis

Kaynak

Ceramics International

WoS Q Değeri

N/A

Scopus Q Değeri

Q1

Cilt

42

Sayı

7

Künye

Auwal, I. A., Güngüneş, H., Baykal, A., Güner, S., Shirsath, S. E.,Sertkol, M. (2016). Structural, morphological, optical, cation distribution and Mössbauer analysis of Bi3+ substituted strontium hexaferrite. Ceramics International, 42(7), 8627-8635.