A fully coupled thermal–microstructural–mechanical finite element processmodel for directed energy deposition additive manufacturing of Ti–6Al–4V

[ X ]

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

TAYLOR & FRANCIS LTD

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

A fully coupled thermal–microstructural–mechanical finite element modelling framework is developed to investigate the distortion and residual stresses during directed energy deposition (DED) of multi-phase Ti–6Al–4V alloy. The Johnson–Cook constitutive model is used to predict the yield strength of each phase as a function of strain, strain rate and temperature where the flow stress is calculated by a linear mixing rule based on the volumetric phase fractions. A thin-walled rectangular sample is chosen as the reference geometry and the results are compared with experimentally measured in situ thermal history and distortion data, where a reasonable agreement is achieved. The proposed modelling framework with physics-based material constitutive model provides useful information for a better understanding of process–microstructure–property relations in additive manufacturing by DED.

Açıklama

Anahtar Kelimeler

Directed energy deposition, Thermal–microstructural–mechanical simulation, Finiteelement method, Solid-statephase transformation, Residual stress, Distortion

Kaynak

WoS Q Değeri

Q3

Scopus Q Değeri

Q1

Cilt

28

Sayı

2

Künye

Tunay, M., Baykasoğlu, C., Akyildiz, O., & C. To, A. (2023). A fully coupled thermal–microstructural–mechanical finite element process model for directed energy deposition additive manufacturing of Ti–6Al–4V. Science and Technology of Welding and Joining, 28(2), 118-127.