A fully coupled thermal–microstructural–mechanical finite element processmodel for directed energy deposition additive manufacturing of Ti–6Al–4V

dc.authorid0000-0001-7583-7655
dc.authorid0000-0003-4402-1535
dc.authorid0000-0002-0081-1642
dc.authorid0000-0003-2893-8378
dc.authorwosidAAS-8420-2020
dc.authorwosidJ-4991-2012
dc.authorwosidAAP-4066-2021
dc.contributor.authorTuna
dc.contributor.authorBaykasoğlu, Cengiz
dc.contributor.authorAkyıldız, Öncü
dc.contributor.authorC.To, Albert
dc.date.accessioned2024-01-24T11:05:16Z
dc.date.available2024-01-24T11:05:16Z
dc.date.issued2023en_US
dc.departmentHitit Üniversitesi, Mühendislik Fakültesi, Makine Mühendisliği Bölümü
dc.description.abstractA fully coupled thermal–microstructural–mechanical finite element modelling framework is developed to investigate the distortion and residual stresses during directed energy deposition (DED) of multi-phase Ti–6Al–4V alloy. The Johnson–Cook constitutive model is used to predict the yield strength of each phase as a function of strain, strain rate and temperature where the flow stress is calculated by a linear mixing rule based on the volumetric phase fractions. A thin-walled rectangular sample is chosen as the reference geometry and the results are compared with experimentally measured in situ thermal history and distortion data, where a reasonable agreement is achieved. The proposed modelling framework with physics-based material constitutive model provides useful information for a better understanding of process–microstructure–property relations in additive manufacturing by DED.
dc.description.provenanceSubmitted by Zeynep Umut NARİN (umutarslan@hitit.edu.tr) on 2024-01-24T11:05:04Z No. of bitstreams: 0en
dc.description.provenanceApproved for entry into archive by Zeynep Umut NARİN (umutarslan@hitit.edu.tr) on 2024-01-24T11:05:16Z (GMT) No. of bitstreams: 0en
dc.description.provenanceMade available in DSpace on 2024-01-24T11:05:16Z (GMT). No. of bitstreams: 0 Previous issue date: 2023en
dc.identifier.citationTunay, M., Baykasoğlu, C., Akyildiz, O., & C. To, A. (2023). A fully coupled thermal–microstructural–mechanical finite element process model for directed energy deposition additive manufacturing of Ti–6Al–4V. Science and Technology of Welding and Joining, 28(2), 118-127.
dc.identifier.doi10.1080/13621718.2022.2127211
dc.identifier.endpage127en_US
dc.identifier.issn1362-1718
dc.identifier.issue2en_US
dc.identifier.scopusqualityQ1
dc.identifier.startpage118en_US
dc.identifier.urihttps://doi.org/10.1080/13621718.2022.2127211
dc.identifier.urihttps://hdl.handle.net/11491/8729
dc.identifier.volume28en_US
dc.identifier.wosWOS:000860576200001
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorTunay, Merve
dc.institutionauthorBaykasoğlu, Cengiz
dc.institutionauthorAkyıldız, Öncü
dc.language.isoen
dc.publisherTAYLOR & FRANCIS LTD
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectDirected energy depositionen_US
dc.subjectThermal–microstructural–mechanical simulationen_US
dc.subjectFiniteelement methoden_US
dc.subjectSolid-statephase transformationen_US
dc.subjectResidual stressen_US
dc.subjectDistortionen_US
dc.titleA fully coupled thermal–microstructural–mechanical finite element processmodel for directed energy deposition additive manufacturing of Ti–6Al–4V
dc.typeArticle

Dosyalar

Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: