A new explainable robust high-order intuitionistic fuzzy time-series method

dc.contributor.authorKoçak, Cem
dc.contributor.authorEğrioğlu, Erol
dc.contributor.authorBaş, Eren
dc.date.accessioned2021-11-01T15:05:41Z
dc.date.available2021-11-01T15:05:41Z
dc.date.issued2021
dc.departmentHitit Üniversitesi, İktisadi ve İdari Bilimler Fakültesi, İktisat Bölümü
dc.description.abstractFuzzy time series, based on type-1 fuzzy sets, continue to have a wide range of use in the literature. These methods use only membership values to determine the fuzzy relations. However, intuitionistic fuzzy time series models use both membership values and non-membership values. So it can be considered that the use of intuitionistic fuzzy time forecasting models will be able to increase the forecasting performance because the intuitionistic fuzzy sets have more information than fuzzy sets. Therefore, intuitionistic fuzzy time series models have started to employ for forecasting the real-life series in the fuzzy time series literature. A novel, explainable, robust high-order intuitionistic fuzzy time series forecasting method is proposed based on a newly defined model. In the proposed method, the intuitionistic fuzzy c-means algorithm is used for the fuzzification of observations, and a robust regression method employed for determining fuzzy relations. With the use of robust regression in determining the fuzzy relationships, all inputs of the proposed method can be explainable and they can be tested and commented on statistically. Applications of this study are made by using energy data of Primary Energy Consumption between the years 1965 and 2016 for 23 countries in the region of Europe-Eurasia. The forecasting performance of the proposed method is compared with the performance of some selected benchmarks, and the obtained results are discussed.
dc.identifier.citationKocak, C., Eğrioğlu, E., & Bas, E. (2021). A New Explainable Robust High Order Intuitionistic Fuzzy Time Series Method.
dc.identifier.doi10.1007/s00500-021-06079-4
dc.identifier.issn1432-7643
dc.identifier.issn1433-7479
dc.identifier.scopus2-s2.0-85113737233
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1007/s00500-021-06079-4
dc.identifier.urihttps://hdl.handle.net/11491/7371
dc.identifier.wosWOS:000687512200003
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorKoçak, Cem
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofSoft Computing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectIntuitionistic Fuzzy Time Seriesen_US
dc.subjectIntuitionistic Fuzzy Setsen_US
dc.subjectForecastingen_US
dc.subjectRobust Regressionen_US
dc.subjectIntuitionistic Fuzzy c-meansen_US
dc.subjectExplainable Artificial Intelligenceen_US
dc.subjectPrincipal Component Analysisen_US
dc.subjectEnergy Data Forecastingen_US
dc.titleA new explainable robust high-order intuitionistic fuzzy time-series method
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
cem-kocak2021.pdf
Boyut:
504.7 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text