Arbitrarily long factorizations in mapping class groups
[ X ]
Tarih
2015
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Oxford University Press
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Abstract. On a compact oriented surface of genus g with n ? 1 boundary components, ?1, ?2, . . . , ?n, we consider positive factorizations of the boundary multitwist t?1 t?2 · · ·t?n , where t?i is the positive Dehn twist about the boundary ?i. We prove that for g ? 3, the boundary multitwist t?1 t?2 can be written as a product of arbitrarily large number of positive Dehn twists about nonseparating simple closed curves, extending a recent result of Baykur and Van Horn-Morris, who proved this result for g ? 8. This fact has immediate corollaries on the Euler characteristics of the Stein fillings of contact three manifolds
Açıklama
Anahtar Kelimeler
[Belirlenecek]
Kaynak
International Mathematics Research Notices
WoS Q Değeri
N/A
Scopus Q Değeri
Q2
Cilt
2015
Sayı
19
Künye
Dalyan, E., Korkmaz, M., Pamuk, M. (2014). Arbitrarily long factorizations in mapping class groups. International Mathematics Research Notices, 2015(19), 9400-9414.