Arbitrarily long factorizations in mapping class groups

dc.authorid0000-0003-2099-7584
dc.contributor.authorDalyan, Elif
dc.contributor.authorKorkmaz, Mustafa
dc.contributor.authorPamuk, Mehmetcik
dc.date.accessioned2019-05-13T08:59:07Z
dc.date.available2019-05-13T08:59:07Z
dc.date.issued2015
dc.departmentHitit Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü
dc.description.abstractAbstract. On a compact oriented surface of genus g with n ? 1 boundary components, ?1, ?2, . . . , ?n, we consider positive factorizations of the boundary multitwist t?1 t?2 · · ·t?n , where t?i is the positive Dehn twist about the boundary ?i. We prove that for g ? 3, the boundary multitwist t?1 t?2 can be written as a product of arbitrarily large number of positive Dehn twists about nonseparating simple closed curves, extending a recent result of Baykur and Van Horn-Morris, who proved this result for g ? 8. This fact has immediate corollaries on the Euler characteristics of the Stein fillings of contact three manifolds
dc.identifier.citationDalyan, E., Korkmaz, M., Pamuk, M. (2014). Arbitrarily long factorizations in mapping class groups. International Mathematics Research Notices, 2015(19), 9400-9414.
dc.identifier.doi10.1093/imrn/rnu226
dc.identifier.endpage9414en_US
dc.identifier.issn1073-7928
dc.identifier.issue19en_US
dc.identifier.scopusqualityQ2
dc.identifier.startpage9400en_US
dc.identifier.urihttps://doi.org/10.1093/imrn/rnu226
dc.identifier.urihttps://hdl.handle.net/11491/1254
dc.identifier.volume2015en_US
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherOxford University Press
dc.relation.ispartofInternational Mathematics Research Notices
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subject[Belirlenecek]en_US
dc.titleArbitrarily long factorizations in mapping class groups
dc.typeArticle

Dosyalar