Monte Carlo simulations of hydrogen adsorption in fullerene pillared graphene nanocomposites

dc.authoridBALABAN, Humeyra MERT / 0000-0002-8036-8678
dc.authoridDeniz, Celal Utku / 0000-0003-0948-9626
dc.authoridBaykasoglu, Cengiz / 0000-0001-7583-7655
dc.authorwosidBALABAN, Humeyra MERT / AAE-4061-2019
dc.authorwosidDeniz, Celal Utku / AAO-5583-2021
dc.authorwosidBaykasoglu, Cengiz / AAS-8420-2020
dc.contributor.authorMert Balaban, Hümeyra
dc.contributor.authorDeniz, Celal Utku
dc.contributor.authorBaykasoğlu, Cengiz
dc.date.accessioned2021-11-01T15:03:01Z
dc.date.available2021-11-01T15:03:01Z
dc.date.issued2020
dc.department[Belirlenecek]
dc.description.abstractThe objective of this study is to investigate the hydrogen storage performances of three-dimensional periodic fullerene pillared graphene nanocomposites (FPGNs) consisting of covalently bonded fullerene units between graphene layers. Different forms of fullerenes were used as pillars to adjust porosity and enhance the hydrogen storage capacities of the proposed structures. The gravimetric and volumetric hydrogen uptakes of FPGNs were investigated via grand canonical Monte Carlo calculations under both low- and high -pressure (i.e. 0.01-100 bars) and different thermal (i.e. 77 and 298 K) loading conditions. The simulation results showed that a considerable enhancement in hydrogen adsorption performance could be achieved with the appropriate selection of fullerene size and loading conditions. The simulation results revealed that the FPGNs could uptake 10.3 wt.% hydrogen at 77 K. In addition, the deliverable hydrogen storage capacity of FPGNs could overpass 7.8 wt.% for the charge at 77 K, 100 bar and discharge at 160 K, 5 bar conditions which emphasises the potential of the proposed structures as future ultra-lightweight hydrogen storage media.
dc.identifier.doi10.1080/08927022.2020.1758696
dc.identifier.endpage659en_US
dc.identifier.issn0892-7022
dc.identifier.issn1029-0435
dc.identifier.issue8en_US
dc.identifier.scopus2-s2.0-85084385201
dc.identifier.scopusqualityQ2
dc.identifier.startpage650en_US
dc.identifier.urihttps://doi.org/10.1080/08927022.2020.1758696
dc.identifier.urihttps://hdl.handle.net/11491/6924
dc.identifier.volume46en_US
dc.identifier.wosWOS:000532492500001
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorBaykasoğlu, Cengiz
dc.institutionauthorMert Balaban, Hümeyra
dc.institutionauthorDeniz, Celal Utku
dc.language.isoen
dc.publisherTaylor & Francis Ltd
dc.relation.ispartofMolecular Simulation
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectPillared nanoporous materialen_US
dc.subjectfullereneen_US
dc.subjectgrapheneen_US
dc.subjecthydrogen storageen_US
dc.subjectgrand canonical Monte Carlo simulationsen_US
dc.titleMonte Carlo simulations of hydrogen adsorption in fullerene pillared graphene nanocomposites
dc.typeArticle

Dosyalar