Li-doped fullerene pillared graphene nanocomposites for enhancing hydrogen storage: A computational study

dc.authoridDeniz, Celal Utku / 0000-0003-0948-9626
dc.authoridBALABAN, Humeyra MERT / 0000-0002-8036-8678
dc.authoridBaykasoglu, Cengiz / 0000-0001-7583-7655
dc.authorwosidDeniz, Celal Utku / AAO-5583-2021
dc.authorwosidBALABAN, Humeyra MERT / AAE-4061-2019
dc.authorwosidBaykasoglu, Cengiz / AAS-8420-2020
dc.contributor.authorDeniz, Celal Utku
dc.contributor.authorMert Balaban, Hümeyra
dc.contributor.authorBaykasoğlu, Cengiz
dc.date.accessioned2021-11-01T15:05:23Z
dc.date.available2021-11-01T15:05:23Z
dc.date.issued2021
dc.department[Belirlenecek]
dc.description.abstractHydrogen physisorption in lithium doped fullerene pillared graphene nanocomposites (Li-FPGNs) having tunable pore structures were examined under different temperature and pressure conditions via grand canonical Monte Carlo (GCMC) simulations. Different forms of fullerenes and Li doping ratios, which have considerable effects on the pore structures and surface properties of FPGNs, were considered to optimize the gravimetric, volumetric and deliverable hydrogen adsorption performances of FPGNs. The GCMC simulations confirmed that the hydrogen adsorption performances of undoped FPGNs could be significantly enhanced with the appropriate selection of the doping ratio and types of fullerenes especially at ambient temperature or low-pressure conditions. Particularly, the GCMC simulations showed that the total gravimetric adsorption capacity of Li-FPGNs with doping ratio of Li:C = 15:100 could reach 9.1 wt% at 77 K and 1 bar, which corresponds to about two times increment in the hydrogen storage performance of undoped FPGNs. Moreover, the GCMC simulations demonstrated that Li doping could enhance the excess hydrogen storage capacity of FPGNs up to three times at ambient temperature. These results revealed that Li-FPGNs are promising candidates in the field of hydrogen storage.
dc.identifier.doi10.1016/j.commatsci.2020.110023
dc.identifier.issn0927-0256
dc.identifier.issn1879-0801
dc.identifier.scopus2-s2.0-85090154533
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.commatsci.2020.110023
dc.identifier.urihttps://hdl.handle.net/11491/7251
dc.identifier.volume186en_US
dc.identifier.wosWOS:000594495400006
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorBaykasoğlu, Cengiz
dc.institutionauthorMert Balaban, Hümeyra
dc.institutionauthorDeniz, Celal Utku
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofComputational Materials Science
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectHydrogen storageen_US
dc.subjectPillared graphene frameworken_US
dc.subjectFullereneen_US
dc.subjectLi-dopingen_US
dc.subjectGCMCen_US
dc.titleLi-doped fullerene pillared graphene nanocomposites for enhancing hydrogen storage: A computational study
dc.typeArticle

Dosyalar