Electrochemical Glucose Detection Using PdAg Nanoparticles Anchored on rGO/MWCNT Nanohybrids

[ X ]

Tarih

2020

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer/Plenum Publishers

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

The combination of multi-walled carbon nanotube (MWCNT) and graphene (Gr) to extend their unique physicochemical properties to 3-dimensions (3D) is known to be an effective way to achieve high catalytic properties in electrochemistry. In this context, PdAg metal nanoparticles (MNPs) were anchored on 3-D MWCNT-rGO nanohybrids to construct high-performance enzyme-free electrochemical glucose sensors. The PdAg/MWCNT-rGO nanohybrids were prepared via a one-pot synthesis route and characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS) methods. The XRD and TEM results confirmed the successful immobilization of PdAg nanoparticles on the support surface and the EDS results revealed a homogeneous MNP distribution. The PdAg content anchored on the hybrids was found to be 39 wt% by TGA analysis, which is compatible with the starting stoichiometric ratio. The constructed sensors showed the sensitivities of 13.16 +/- 0.4 and 5.22 +/- 0.07 mu A mM(-1) cm(-2) in the concentration windows of 0.05 to 4 and 4 to 42 mM, respectively. A wide linear range of 0.05 to 42 mM with a low limit of detection (51 mu M) was obtained from the sensors.

Açıklama

Anahtar Kelimeler

Electrochemical sensor, Glucose, Graphene, Multi Walled Carbon Nanotube, Palladium, Silver

Kaynak

Journal Of Cluster Science

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

31

Sayı

1

Künye

Electrochemical Glucose Detection Using PdAg Nanoparticles Anchored on rGO/MWCNT Nanohybrids