Theoretical assessment of calix[4]arene-N-beta-ketoimine (n=1-4) derivatives: Conformational studies, optoelectronic, and sensing of Cu(2+)cation

dc.authoridechabaane, mosaab / 0000-0001-9230-3815
dc.authorwosidGhalla, Houcine / AAY-7560-2021
dc.contributor.authorGassoumi, B.
dc.contributor.authorBen Mohamed, F. E.
dc.contributor.authorKhedmi, N.
dc.contributor.authorKarayel, Arzu
dc.contributor.authorEchabaane, M.
dc.contributor.authorGhalla, H.
dc.contributor.authorBen Chaabane, R.
dc.date.accessioned2021-11-01T15:06:10Z
dc.date.available2021-11-01T15:06:10Z
dc.date.issued2021
dc.department[Belirlenecek]
dc.description.abstractHerein, we have investigated the key functions of the calix[4]arene, abbreviated as CX [1], and designed its several derivatives by substitution of the functional groups. Molecular geometry provides an intuitive understanding of the effect of functional groups on various physical properties. The addition of the N-beta -ketoimine (n=1-4) ligands has a direct effect on the stretching vibration of the H-bonding interaction. The results showed that all molecules possess absorption bands at 190 nm and in the range between 200 and 300 nm assigned to pi-pi* and n-pi* transitions. HOMO-LUMO energy gap of the CX[4]-N-beta -ketoimine, one with chemical hardness of 1.62 eV, has been found to be 3.24 eV calculated at B3LYP/6-31+G(d) level of theory. This finding explains the good kinetic stability of this compound. The large values of electrophilicity make the current molecules as a good electrophilic species. The atom in molecule (AIM) and the reduced density gradient (RDG) analyses showed the type and the strength of the interactions taking place between Cu2+ and the beta -ketoimine ligands.
dc.description.sponsorshipTunisian's Ministry of high education and scientific researchen_US
dc.description.sponsorshipThe authors acknowledge financial support from the Tunisian's Ministry of high education and scientific research.en_US
dc.identifier.doi10.1007/s00894-020-04622-y
dc.identifier.issn1610-2940
dc.identifier.issn0948-5023
dc.identifier.issue1en_US
dc.identifier.pmid33409596
dc.identifier.scopus2-s2.0-85098997128
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1007/s00894-020-04622-y
dc.identifier.urihttps://hdl.handle.net/11491/7507
dc.identifier.volume27en_US
dc.identifier.wosWOS:000608022300002
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.institutionauthorKarayel, Arzu
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofJournal Of Molecular Modeling
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectCalix[4]areneen_US
dc.subjectH-bondingen_US
dc.subjectMolecular electrostatic potentialen_US
dc.subjectElectron populationen_US
dc.subjectInteraction energiesen_US
dc.titleTheoretical assessment of calix[4]arene-N-beta-ketoimine (n=1-4) derivatives: Conformational studies, optoelectronic, and sensing of Cu(2+)cation
dc.typeArticle

Dosyalar